Полимерные материалы в технологических машинах. Полимерные материалы, применяемые при ремонте

При ремонте машин полимерные материалы получили широкое применение. Они имеют большой диапазон положительных свойств:

  • хорошие фрикционные и антифрикционные качества
  • достаточная прочность
  • масло-, бензо- и водостойкость
  • сохранение формы детали
  • способность выдерживать определенную нагрузку и температуру
  • простота восстановления и изготовления деталей и др.

Обладая ценными физико-механическими свойствами, полимерные материалы позволяют снизить трудоемкость ремонта и технического обслуживания машин на 20-30% и сократить расход дефицитных материалов (черного и цветного металла, сварочных и наплавочных материалов, припоя и т. д.) на 40-50%. К недостаткам полимерных материалов можно отнести изменение их свойств в зависимости от срока службы (старение), сравнительно низкую твердость, усталостную прочность и теплостойкость.

Для использования при ремонте машин рекомендованы следующие полимерные материалы: поликапроамид (капрон), полиэтилен, полистирол, полиамид, волокнит, эпоксидные смолы, синтетические клеи, герметики, анаэробные полимерные материалы и др. Промышленность выпускает специальные аптечки и наборы полимерных материалов для ремонта машин.

Использование полимерных материалов не требует сложного оборудования и высокой квалификации рабочих. Оно возможно в условиях специализированных ремонтных предприятий, в мастерских хозяйств, а также в полевых условиях.

Применение эпоксидных композиций при восстановлении деталей

Эпоксидные смолы в чистом виде используют очень редко. В ремонтной практике применяют эпоксидные составы, которые являются многокомпонентными системами. Важнейшим преимуществом композиции перед полимерами является их повышенная жесткость и прочность, стабильность размеров, повышенная ударная вязкость, регулируемые фрикционные и другие свойства. Однако нельзя достигнуть всех этих свойств в одной композиции.

Кроме эпоксидной смолы, в состав композиции в зависимости от назначения могут входить пластификаторы, наполнители, отвердители, ускорители отверждения, пигменты и другие компоненты.

Пластификаторы уменьшают хрупкость и стойкость к резкому изменению температуры, но уменьшают теплопроводность. В качестве пластификатора чаще всего используют дибутилфталат.

Наполнители вводят для повышения физико-механических свойств, снижения внутренних напряжений, возникающих вследствие разницы коэффициентов линейного расширения металла и полимера. Наполнители подразделяют на связующие (стеклоткань, ткани) и порошкообразные (железный порошок, алюминиевая пудра, цемент, тальк, графит и др.).

В качестве отвердителя эпоксидных смол чаще используют полиэтиленполиамин.

Эпоксидные композиции являются универсальным ремонтным материалом. Их применяют для заделки трещин, раковин, пробоин, восстановления подвижных и неподвижных сопряжений, склеивания деталей. Состав композиции зависит от требуемых свойств и условий работы. Для закрепления втулок, колец, ввертышей при восстановлении с использованием ремонтных дополнительных деталей применяют композицию без наполнителей. На 100 частей (по массе) эпоксидной смолы ЭД-16 берут 10 частей дибутилфталата и 12 частей полиэтиленполиамина. При заделке трещин, пробоин, восстановлении посадочных мест под подшипники в композиции вводят наполнители.

Приготовление композиции заключается в следующем. Эпоксидную смолу в таре разогревают до температуры 70-80°С, отливают необходимое количество в сосуд, добавляют пластификатор и перемешивают двухкомпонентный состав. Затем, если необходимо, вносят наполнитель, предварительно высушенный в течение 2-3 ч при температуре 100-120°С, и тщательно перемешивают состав. Отвердитель добавляют перед употреблением композиции.

Приготовленную композицию необходимо использовать в течение 20-25 мин.

Заделка трещин и пробоин

Эпоксидные композиции используют для заделки трещин в корпусных деталях, не проходящих через отверстия под втулки, посадочные места под подшипники, резьбовые отверстия, длиной не более 200 мм. После определения размеров трещины ее края засверливают сверлом диаметром 3 мм, а трещину по всей длине разделывают под углом 60-70°, на глубину 2-3 мм (при толщине стенки более 5 мм). Если толщина стенки менее 2 мм, разделку трещины не делают. Поверхность детали зачищают до металлического блеска на расстоянии 40 мм по обе стороны от трещины и обезжиривают ацетоном. Приготовленный состав наносят на поверхность и уплотняют шпателем. Для заделки мелких трещин (до 20 мм) используют композицию без наполнителя. При восстановлении чугунных деталей с пробоинами и трещинами длиной более 20 мм применяют следующий состав. На 100 частей (по массе) смолы ЭД-16 берут 15 частей дибутилфталата, 120 частей железного порошка и 11 частей полиэтиленполиамина. Для восстановления корпусных деталей из алюминиевых сплавов вместо железного порошка в качестве наполнителя используют алюминиевую пудру (25 частей).

Трещину длиной 20-150 мм на корпусных деталях или баках заделывают эпоксидной композицией, армированной стеклотканью или технической бязью. Первая накладка из ткани должна перекрывать трещину на 20-25 мм по обе стороны, а вторая перекрывать первую на 10-15 мм. После нанесения первого слоя эпоксидной композиции накладывают первую накладку и прикатывают роликом. На поверхность накладки наносят тонкий слой композиции и накладывают вторую накладку, которую тоже прикатывают роликом. На вторую накладку снова наносят слой композиции и оставляют для отверждения.

Рис. Варианты заделки трещин: а - эпоксидным составом; б - эпоксидным составом, армированным стеклотканью; в - эпоксидным составом и металлической накладкой.

Трещины на корпусных деталях длиной более 150 мм заделывают с помощью накладки.из листовой стали толщиной 1,5-2,0 мм. Зачищенные поверхности детали, накладки и винтов покрывают эпоксидной композицией.

Отверждение композиции проводят при температуре 18-20 С» в течение 72 ч. Допускается проводить отверждение при температуре 20 С» в течение 12 ч, а затем по одному из следующих режимов: при 40 С» — 48 ч; при 60 С» — 24 ч; при 80 С» — 52 ч; при 100 С» - 3 ч.

Пробоины в корпусных деталях, бачках радиаторов, топливных баках заделывают наложением заплат внахлестку с применением эпоксидных композиций. При небольших пробоинах накладку изготавливают из стеклоткани. Тонкостенные детали восстанавливают наложением накладки из листовой стали. Пробоины в корпусных деталях заделывают постановкой внахлестку металлической накладки на винтах. Стальная накладка может быть закреплена с помощью эпоксидной композиции, проникающей в дополнительные сверления.

Восстановление посадочных отверстий

Эпоксидные композиции применяют при ремонте неподвижных сопряжений деталей типа корпус - подшипник, корпус - втулка, если зазор в сопряжении не превышает 0,1 мм. Перед нанесением композиции сопрягаемые поверхности отверстия в корпусе, втулки (подшипника) зачищают и обезжиривают. После просушивания наносят композицию (без наполнителя) на подготовленные поверхности слоем толщиной не более 0,5 мм. Через 10-15 мин втулку (подшипник) запрессовывают в отверстие и проводят отверждение по одному из вышеприведенных режимов.

Склеивание деталей синтетическими клеями

Для склеивания применяют клеи ВС-ЮТ и типа БФ, 88Н и др. Клей ВС-ЮТ используют для приклеивания накладок к тормозным колодкам и дискам сцепления. Кроме того, его можно использовать для склеивания металлов, стеклотекстолитов и других материалов. Режим отверждения: давление прижатия склеиваемых поверхностей - 0,2-0,4 МПа, температура - 175-185°С, продолжительность - 1,5-2,0ч.

Клеи БФ-2, БФ-4, БФ-6 применяют для склеивания металлов, древесины и др.

Клей БФ-6 дает более эластичные соединения, поэтому его применяют для склеивания фетра, войлока, тканей и других материалов. Режим склеивания: давление - 0,5- 1,0 МПа, температура - 140-160°С, продолжительность - 1,0- 1,5 ч. Клей БФ-52Т используют для тех же целей, что и клей ВС- ЮТ.

Для склеивания резин и резины с металлом применяют клей 88Н.

Поверхности, подлежащие склеиванию, очищают от загрязнений и старых полимерных материалов. Металлические поверхности зачищают до металлического блеска и обезжиривают ацетоном или бензином. После сушки деталей наносят слой клея толщиной 0,10-0,15 мм на склеиваемые поверхности и выдерживают при комнатной температуре в течение 10-15 мин. Затем наносят второй слой клея и просушивают детали. Окончание сушки проверяют «на отлип». К слою клея прикладывают резиновый брусок, очищенный ацетоном. Если он не прилипает, склеиваемые поверхности накладывают одна на другую и сжимают специальными приспособлениями. Деталь вместе с приспособлениями помещают в специальный шкаф для термообработки (отверждения клеевого состава) и выдерживают в течение 40 мин. Для уменьшения остаточных напряжений в клеевом соединении детали охлаждают вместе со шкафом до температуры 80-100°С, а затем на воздухе до температуры 20-25°С в течение 2-3 ч и снимают с приспособлений.

По такой технологии приклеивают фрикционные накладки на тормозные колодки и диски.

Применение эластомеров при восстановлении посадок

Ремонт подшипниковых узлов часто заключается в восстановлении первоначальных натягов. Нарушению посадки способствует смятие неровностей поверхностей при запрессовке и снятии подшипников и вследствие проворачивания кольца подшипника при работе машины. Для восстановления посадочных мест под подшипники в отверстиях и на валах, а также под втулки и шестерни при износе не более 0,06 мм применяют эластомеры ГЭН-150(B) или 6Ф.

Технологический процесс включает следующие операции: приготовление раствора, зачистка и обезжиривание изношенных поверхностей, нанесение раствора на подготовленные поверхности, термическая обработка и Сборка узлов. Растворы приготовляют по следующей рецептуре: одна часть (по массе) эластомера ГЭН- 150(B) и 6,2 части ацетона; или 2 части эластомера 6Ф, 5 частей ацетона и 5 частей этилацетата.

Раствор эластомера наносят на поверхность детали в вытяжном шкафу кисточкой. Не допускается перекрытия слоев при нанесении раствора. Толщина пленки одного слоя равна 0,01 мм. Деталь с покрытием выдерживают 20 мин, а затем помещают для термообработки в сушильный шкаф. Термообработка проводится при температуре 120 С» в течение 30 мин. Каждый последующий слой до получения необходимой толщины наносят после термообработки предыдущего. Перед сборкой поверхность детали, покрытой эластомером, смазывают графитной смазкой, охватывающую деталь подогревают до температуры 120-140°С.

Полимерные материалы в ремонте машин


Полимерные материалы при ремонте машин применяются для восстановления размеров изношенных деталей, заделки трещин и пробоин, упрочнения резьбовых соединений и неподвижных посадок, антикоррозионной защиты, склеивания деталей и материалов, а также для изготовления деталей. Для этих целей наиболее часто применяются полиамидные смолы в виде гранул с белым или просвечивающим желтым оттенком (капроновый порошок). Они отличаются от других полимеров малым коэффициентом трения, значительной термоста-, бильностью, хорошей прорабатываемостью, высокой антикоррозионной и химической стойкостью, безвредны для работающих.

Полимерные материалы применяют как в чистом виде (полиэтилен, полистирол, капрон, полипропилен), так и в виде пластмасс. Для образования пластмасс к полимерному материалу добавляют ряд компонентов: наполнители (стеклянное волокно, асбест, цемент, металлические порошки), улучшающие физико-механические свойства пластмасс; пластификаторы (дибутилфталат, диакрилфталат, жидкий тиокол и другие), улучшающие пластичность и эластичность пластмасс; отвердители (полиэтиленполиамин и др.) для отвердения (полимеризации) пластмасс.

Нанесение полимерных покрытий с целью восстановления изношенных деталей имеет ряд преимуществ перед другими способами. Невысокая температура нагрева деталей (250…320 °С) перед нанесением покрытия не изменяет структуру металла. Полимерными покрытиями можно восстанавливать детали с большим износом (1… 1,2 мм), тогда как при хромировании восстанавливают детали с износом не более 0,5 мм. Покрытие, как правило, не нуждается в механической обработке, так как имеет чистую глянцевую поверхность и незначительную разницу в толщине слоя.

Основные операции восстановления деталей полимерными материалами включают подготовку деталей к восстановлению, нанесение покрытия, термическую обработку и контроль.

Подготовка детали к восстановлению заключается в изоляции мест, не подлежащих покрытию, и создании условий, обеспечивающих хорошую адгезию (прилипание) полимерного покрытия с металлом. Изоляцию производят алюминиевой либо латунной фольгой или жидким стеклом с мелом. Места же, подлежащие покрытию, обрабатывают абразивной крошкой или крошкой отбеленного чугуна и обезжиривают ацетоном или бензином.

В ремонтной практике применяется несколько способов нанесения полимерных покрытий на металлические поверхности. Наиболее распространены газопламенный, вихревый и вибрационный.

При газопламенном способе используют факел ацетиленового пламени. Струя воздуха с частицами полимерного порошка продувается через этот факел. Порошок расплавляется и, попадая на предварительно нагретую до температуры 2Ю…260 °С (в зависимости от марки применяемого порошка) поверхность детали, сращивается с ней, образуя наплавленный слой. После нанесения покрытия требуемой толщины подачу порошка прекращают и дополнительно прогревают деталь для того, чтобы сделать слой более ровным и плотным. Газопламенное напыление удобно применять для покрытия крупных деталей, используя установки УПН -4Л, УПН -6-63. Толщина покрытия практически не ограничена.

Покрытие металлических деталей полимерными материалами вихревым способом проводится на установках типа А-67М. Подготовленные детали нагревают в термопечи либо газовыми горелками до температуры 280… 300 °С и помещают в камеру установки. На высоте 50…100 мм от днища установки укреплена пористая перегородка, на которую насыпают порошкообразный слой капрона толщиной не менее 100 мм. Для изготовления пористой перегородки используют стеклоткань, керамику, войлок.

Через перегородку в камеру подается сжатый воздух, азот или углекислый газ под давлением 0,1…0,2 МПа. Частицы порошка равномерно покрывают деталь, плавятся и образуют равномерное покрытие. Напыление длится 8…10 с, во время напыления детали сообщается возвратно-поступательное движение. Чтобы получить требуемую толщину наносимого слоя, каждую деталь необходимо погружать в камеру несколько раз. После каждого погружения ее извлекают, чтобы порошок оплавился, и вслед за этим помещают в камеру установки вторично. Охлаждение восстановленной детали производят на воздухе, в воде или в минеральном масле при комнатной температуре.

Вибрационный способ напыления основан на свойстве сыпучих материалов течь под воздействием колебания, В вибрационной установке якорь и днище вибрируют с частотой 50 Гц. При этом происходят разрыхление и переход порошка капрона в псевдосжиженное состояние. Нагретую деталь, так же как и в вихревом способе, погружают в слой порошка и извлекают для его оплавления. Повторением этих операций обеспечивают требуемую толщину полимерного покрытия.

При быстром охлаждении расплавленного полиамида он затвердевает в виде прозрачной массы, обладающей пониженной износостойкостью. Поэтому охлаждать изделие и нанесенное на его поверхность полимерное покрытие следует медленно. При этом происходит его помрнение и образование более или менее крупных кристаллов. Такой хорошо кристаллизованный полиамид более тверд, чем прозрачный, а следовательно, и более износостоек.

Меньшее распространение получил струйный беспламенный метод напыления пластмасс, который заключается в том, что распыление порошка производится пистолетом-распылителем без нагрева порошка на предварительно подготовленную и нагретую поверхность. Детали, подлежащие восстановлению, после подготовки поверхности (обезжиривание, накатка, химическая очистка и травление, промывка) укладываются в алюминиевую оправку. На электропечи оправка вместе с деталями нагревается до температуры 240 °С, после чего пистолетом-распылителем с помощью подогретого сжатого воздуха порошок наносится на поверхность деталей. Частицы порошка расплавляются и образуют сплошное покрытие. В качестве пистолета-распылителя используют распылители, применяемые для окрасочных работ.

Недостатком этого способа является значительная потеря порошковых материалов при напылении и загрязнение воздуха.

Методом литья под давлением термопластичных материалов в ремонтной практике восстанавливают и изготовляют детали. Данный метод основан на выдавливании из обогревательного цилиндра литьевой машины разогретой пластмассы в гнездо сомкнутой пресс-формы. Литье под давлением проводится на термопластавтоматах ДБ-3329, литьевых машинах ПЛ-71 и др. Изношенная поверхность детали предварительно протачивается, чтобы слой пластмассы был не менее 0,5 мм на сторону. Если возможно, йа детали протачивают канавки, делают сверления.

Подготовленную деталь устанавливают в разогретую пресс-форму, имеющую номинальные размеры восстанавливаемой детали, и нагнетают в нее разогретую пластмассу под давлением 15…125 МПа. Деталь должна быть нагрета до температуры 230…290 °С. Наиболее распространенные термопластичные материалы, применяемые для восстановления деталей литьем под давлением,- капрон (поликапролактам) марки Б, смолы П-68, П-54, АК-7, отходы капрона.

Для улучшения качества полимерного покрытия рекомендуется последующая термическая обработка, например выдержка в течение 2 ч в масле при температуре 100…120 °С с дальнейшим охлаждением вместе с маслом.

Полимерные материалы, имеющие наибольшее применение при ремонте кузовов, условно делят на две группы: клеи и пластмассы.

Клеи предназначены для создания из различных материалов неразъемных соединений. Наиболее часто при ремонте кузовов и их деталей применяют следующие клеи:
— БФ-2 и БФ-4 - для склеивания металлических и неметаллических материалов, эксплуатирующихся при температуре от-60 до 60 °С;
— ФЛ-4С - для герметизации пространства между швами в клеесварных соединениях из стали, алюминиевых и других сплавов, а также для склеивания металлов и неметаллических материалов;
— 88-Н - для приклеивания холодным способом резины к металлам, стеклу и другим материалам, а также для склеивания резины с резиной;
— 88-НП-35, 88-НП-43, 88-НП-130 холодного отверждения - для крепления различных материалов к окрашенному металлу, стеклу при сборке кузовов автомобилей ВАЗ .

Детали из органического стекла склеивают путем размягчения склеиваемых поверхностей дихлорэтаном. В качестве клея можно применять раствор, состоящий из 2…3% опилок органического стекла, растворенных в муравьиной кислоте или дихлорэтане. Для предотвращения быстрого испарения и загустения клея его хранят в закрытом сосуде при температуре 18…20 °С. Для получения рабочей вязкости загустевшего клея (концентрированный сироп) его разбавляют дихлорэтаном.

Эпоксидные клеи универсальны, приготовление и применение их несложно, и они не требуют давления при склеивании. При ремонте кузовов используют эпоксидные клеевые композиции, свойства которых зависят от их состава. Эпоксидные композиции изготовляют из составных частей, чаще всего из эпоксидной смолы ЭД-16 или ЭД-20, пластификатора-дибутилфталата, наполнителя и отвердителя. Эпоксидные смолы в полимерных композициях являются связующими, пластификаторы уменьшают хрупкость, увеличивают эластичность отвержденных эпоксидных смол, наполнители увеличивают теплопроводность, повышают коэффициент линейного расширения и снижают усадку смолы. Поэтому наполнители влияют на физико-механические и технологические свойства компаунда. В качестве наполнителей применяют слюдяную пыль, измельченный асбест, стальной или чугунный порошок и другие. Вид и количество отвердителя определяют скорость и степень изменения физического состояния композиции. Для заделки вмятин в кузовах и оперении обычно используют в качестве отвердителя полиэтиленполиамин или гексаметилендиамин, при которых отверждение композиции происходит без подогрева в нормальных температурных условиях.

Пластмассы используют для нанесения покрытий, заделки вмятин и сварных швов в кузовах. Термостойкая масса ТПФ -37 в виде термопорошка состоит из поливинилбутиральной смолы, полиэтилена, фенолформальдегидной смолы, наполнителя и стабилизатора. Термопорошок наносят на поверхности кузова газопламенным напылением.

К атегория: - Ремонтирование строительных машин

Ремонт деталей полимерами.

Другие способы восстановления деталей.

Литература:

Основная:

1. Ремонт машин/ Под ред. Тельнова Н. Ф. — М.: Агропромиздат, 1992, 560 с.: ил.[с. 193..210]

2. Технология ремонта машин и оборудования. Под общ. ред. И. С. Левитского. Изд.2-е, перераб. и доп. М.: «Колос», 1975.

Дополнительная:

Ремонт машин/ 0.I. Сiдашенко, О. А. Науменко, А. Я. Поicький та ш.;

За ред. 0.I. Сiдашенка, А. Я. Полiського. — К.: Урожай, 1994.- 400с. [с. 138..143 ]

Основные полимерные материалы.

При ремонте машин широко применяют полимерные материалы как для изготовления, так и для восстановления деталей. Это объясняется тем, что они обладают рядом ценных свойств (небольшая объемная масса, значительная прочность, хорошая химическая стойкость, высокие антифрикционные и диэлектрические свойства, вибростойкость, достаточно высокая теплостойкость некоторых из них и т. д.).

Использование полимеров позволяет во многих случаях избежать сложных технологических процессов при восстановлении деталей, таких, как сварка, наплавка, гальванические покрытия и др. Технология применения полимеров проста и доступна для внедрения на ремонтных предприятиях.

Основа пластических масс (пластмасс) - искусственная (синтетическая) или естественная смола, которая играет роль связующего материала и определяет их химические, механические, физические и другие свойства.

Различные пластмассы получают путем добавок к смоле наполнителей, пластификаторов, отвердителей, красителей и других материалов.

К полимерным Материалам относятся пластики, которые, как и пластмассы, делятся на две большие группы: термореактивные (реактопласты) и термопластичные (термопласты).

Реактопласты при нагреве размягчаются, и их можно формовать прессованием или другими способами. После дальнейшего нагрева происходят определенные химические превращения, и они становятся твердыми, плотными, нерастворимыми и неплавкими. Повторно реактопласты по прямому назначению использовать нельзя.

Термопласты Размягчаются при нагреве, формируются литьем под давлением, а затем после охлаждения затвердевают, сохраняя приданную им форму. При повторном нагревании термопласты становятся мягкими и плавкими, т. е. пригодными для повторного использования.

Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, для повышения теплостойкости и уменьшения усадки полимерных материалов, а также для удешевления. В качестве наполнителей используют металлические слежку; портландцемент, хлопчатобумажные ткани, стеклоткань, бумагу, асбест, слюду, графит и др.

Пластификаторы - дибутилфталат, камфара, олеиновая кислота, диметил — и ди-этилфталат и другие - придают полимерам эластичность, вязкость и текучесть при переработке.

Отвердители - амины, магнезия, известь и другие - способствуют переходу полимеров в твердое и нерастворимое состояние.

Красители - нигрозин, охра, мумия, сурик и другие - сообщают полимерам определенный цвет.

Среди многих полимерных материалов, применяемых при ремонте машин, все большее значение приобретают полиамиды, полиэтилен, волокнит, стеклопластик, стиракрил, композиции на основе эпоксидных смол и т. д.

Основные полимерные материалы, используемые в ремонтном деле, характеризуются следующими свойствами.

Капроновая смола (капролактам) марки А и Б — твердый роговидный материал белого цвета или с желтоватым оттенком. Поставляется в виде гранул. Предел прочности: при сжатии 70-80 МПа, при растяжении 60-65 МПа, при изгибе 80 МПа.

Капролактам Применяют для изготовления и восстановления деталей с высокими антифрикционными свойствами (подшипники, зубчатые колеса, втулки, ролики, вкладыши), уплотнений, прокладок и т. д.

Основной недостаток капрона - низкая теплопроводность, теплостойкость и усталостная прочность (6,5 МПа). Максимально допустимая рабочая температура капроновых деталей или покрытий на воздухе не должна превышать плюс 70-80°С и минус 20- 30°С.

Полиэтилен Высокого давления марки Г1Э-150 - твердый роговидный материал молочно-белого цвета. Поставляется в виде гранул. Предел прочности при растяжении 12-16 МПа, при сжатии 12,5 МПа, при изгибе 12-17 МПа.

Полиэтилен этой марки обладает высокими диэлектрическими свойствами, значительной сопротивляемостью к действию кислот и щелочей, хорошей стойкостью в среде различных масел, незначительной поглощаемостью влаги.

Полиэтилен ПЭ-150 Применяют для изоляции проводов, кабелей, деталей высокочастотных устройств, радиоаппаратуры, обкладки аппаратов, резервуаров, покрытия металлов. Полиэтиленовые пленки используют в качестве упаковочного материала.

Полиэтилен низкого давления марок Л, Э и П - твердый роговидный материал молочно-белого цвета. Выпускают его в виде гранул. Предел прочности при растяжении 22- 27 МПа (для марки Л), 22-35 МПа (для марки Э), 22-45 МПа (для марки П). Применяют его для изготовления и восстановления колес, крышек, кожухов, трубок и т. д. Пресс-порошки ФКП-1 и ФК. П-2 Выпускают в виде порошков. Временное сопротивление статическому изгибу для порошка ФКП-1 составляет 50-60 МПа. Его применяют для изготовления деталей с повышенной механической прочностью и сопротивляемостью удару (фланцы, крышки, маховики, шестерни, шкивы, рукоятки и т. д.).

Порошок ФКП-2 Имеет предел прочности при изгибе 75-85 МПа. Этот порошок применяют для изготовления деталей с повышенной прочностью на удар и изгиб (фланцы, шестерни, шкивы, кулачки и т. д.).

Клей БФ-2 - однородная вязкая жидкость темно-коричневого цвета. Им можно склеивать металлы и неметаллические материалы, работающие при температуре от -60° до +180°С, фенольно-формальдегидные пластики, текстолит, стеклотекстолит, гетинакс, амипласты, фибру, стекло, эбонит, древесину, фанеру, ткани, кожу, керамику и т. д.

Предел прочности склеенных образцов на растяжение: сталь-сталь 28,5-38,5 МПа; сталь-фарфор 10 МПа, сталь-стекло 13,9 МПа; дюралюминий-дюралюминий 6,5- 10 МПа. Соединения, стойкие в воде, спирте, бензине, керосине, минеральных кислотах. Выпускают клей в готовом для употребления виде.

Клей БФ-6 Применяют для склеивания тканей, фетра и т. д. Клей ВС-10Т -однородная прозрачная жидкость темно-красного цвета, без посторонних примесей и осадков. Им можно склеивать между собой и в любом сочетании различные металлы и неметаллические материалы (сталь, чугун, алюминий, медь и их сплавы, стеклотекстолит, теплостойкие пенопласты, а также асбоцементные материалы), работающие при температуре 200°С в течение 200 ч и при температуре 300°С в течение 5 ч. Предел прочности на сдвиг (сталь ЗОХГСА - сталь ЗОХГСА) составляет при температуре 20°С-15-17 МПа, при температуре 200°С - 6,0-6,5 МПа и при температуре 300°С - 3,5-4,0 МПа.

Ремонт деталей

Ремонт деталей, имеющих трещины и пробоины. Блоки цилиндров, их головки, картеры коробок передач и другие детали ремонтируют с использованием эпоксидных смол.

Широко используется Эпоксидная смола ЭД-16 - прозрачная вязкая масса светло-коричневого цвета. В герметически закрытом сосуде при комнатной температуре она может храниться продолжительное время.

Смола отвердевает под действием отвердителя, В качестве последнего служат алифатические амины, ароматические амины (АФ-2), низкомолекулярные полиамиды (Л-18, Л-19 и Л-20). Самым распространенным считается Полиэтиленполиамин - вязкая жидкость от светло-желтого до темно-бурого цвета.

Чтобы повысить эластичность и ударную прочность отвержденной эпоксидной смолы, следует вводить в ее состав пластификатор, например дибутилфталат - желтоватую маслянистую жидкость.

С помощью наполнителей улучшаются физико-механические, фрикционные или антифрикционные свойства, повышаются теплостойкость и теплопроводность и снижается стоимость. К ним относятся чугунный, железный и алюминиевый порошки, асбест, цемент, кварцевый песок, графит, стекловолокно и др.

Эпоксидную композицию готовят следующим образом. Разогревают тару с эпоксидной смолой ЭД-16 в термошкафу или емкости с горячей водой до температуры 60…80°С и наполняют ванночку необходимым количеством смолы. В последнюю добавляют небольшими порциями пластификатор (дибутилфталат), тщательно перемешивая смесь в течение 5…8 мин. Далее так же вводят наполнитель - 8… 10 мин.

Приготовленный состав можно хранить длительное время. Непосредственно перед его применением вливают отвердитель и перемешивают в течение 5 мин, после чего эпоксидная композиция должна быть использована в течение 20…25 мин.

Качество эпоксидных покрытий во многом зависит от состава, композиции. Трещины длиной до 20 мм заделывают Следующим образом.

С помощью лупы 8… 10-кратного увеличения определяют границы трещин и на ее концах сверлят отверстия диаметром 2,5… 3,0 мм. Вдоль нее по всей длине снимают фаску под углом 60… 70 °С на глубину 1,0…3,0 мм. Если толщина детали менее 1,5 мм, то снимать фаску не рекомендуется. Зачищают поверхность на расстоянии 40 … 50 мм от трещины до металлического блеска. Обезжиривают поверхности трещины и зачищенного участка, протирая их смоченным в ацетоне тампоном.

После просушивания в течение 8… 10 мин поверхность детали вновь обезжиривают и вторично просушивают.

Деталь 1 (рис. 1, а) Устанавливают так, чтобы поверхность с трещиной 2 Длиной до 20 мм находилась в горизонтальном положении, и наносят шпателем эпоксидный состав 3 На поверхности трещины и зачищенного участка.

Трещину длиной 20… 150 мм (рис. 1,6) Заделывают так же, но после нанесения эпоксидного состава 3 На нее дополнительно укладывают накладку 4 Из стеклоткани. Последняя перекрывает трещину со всех сторон на 20…25 мм. Затем накладку прикатывают роликом 5. На поверхность наносят слой состава, и накладывают вторую накладку Б (рис. 1, в) С перекрытием первой на 10… 15 мм. Далее прикатывают роликом и наносят окончательный слой эпоксидного состава

Рис.1 Схема заделки трещин:

1 — деталь; 2 — трещина; 1 Эпоксидный состав; 4 и 6-накладки из стеклоткани; 5 — ролик; 7 — Металлическая накладка; 8 ~ болт.

На трещины длиной более 150 мм (рис. 1, г) Наносят эпоксидный состав с наложением металлической накладки и закреплением ее болтами. Подготовка поверхности и разделка трещины такая же, что и для трещины длиной менее 150 мм.

Накладку 7 изготавливают из листовой стали толщиной 1,5… 2,0 мм. Она должна перекрывать трещину на 40… 50 мм. В накладке сверлят отверстия диаметром 10 мм. Расстояние между их центрами вдоль трещины 60… 80 мм. Центры должны отстоять от краев накладки на расстоянии не менее 10 мм.

Накладку устанавливают на трещину. Кернят центры отверстий на детали, снимают накладку, сверлят отверстия диаметром 6,8 мм и нарезают в них резьбу 1М8Х1. Поверхности детали и накладки зачищают до металлического блеска и обезжиривают.

Пробоины на деталях заделывают с помощью этого же состава с наложением металлических накладок заподлицо или внахлестку. В первом случае (рис. 2, а) Притупляют острые кромки пробоины и зачищают поверхность детали вокруг пробоины до металлического блеска на расстоянии 10…20 мм.

Накладку изготавливают из листовой стали толщиной 0,5,.. 0,8 мм. Она должна перекрывать пробоину на 10…20 мм. Обезжиривают и просушивают в течение 8… 10 мин кромки пробоины и зачищенный вокруг нее участок поверхности.


Рис.2 Схема заделки пробоин с наложением накладок:

А — заподлицо; б Внахлестку; 1 и б — металлические накладки; 2 и 5 — слои эпоксидного состава; 3 — проволока; 4 Накладка из стеклоткани; 7 Болт.

Прикрепляют к центру накладки проволоку диаметром 0,3…0,5 мм и длиной 100… 150 мм. Выполняют из стеклоткани накладки по контуру пробоины. Наносят тонкий слой эпоксидного состава после вторичного обезжиривания кромок пробоины и зачищенного участка и просушивания.

Устанавливают накладку 1 Под пробоину и закрепляют проволокой 3. Затем укладывают на накладку 1 Накладку 4 Из стеклоткани, прикатывают ее роликом, наносят эпоксидный состав, укладывают вторую накладку из стеклоткани и прикатывают ее роликом. Операции по нанесению эпоксидного состава и укладке накладок из стеклоткани повторяют до тех пор, пока пробоина не будет заполнена по всей толщине стенки. На верхнюю накладку наносят слой 2 эпоксидного состава и проводят его отверждение. Во втором случае (рис. 2,6) Притупляют острые края пробоины, зачищают вокруг нее на расстоянии 40… 50 мм до металлического блеска поверхность детали. Накладку изготавливают из стали толщиной 1,5…2,0 мм. Она должна перекрывать пробоину на 40… 50 мм. Сверлят в ней отверстия диаметром 10 мм. Расстояние между ними по периметру пробоины 50… 70 мм. Центры должны отстоять от краев накладки на расстоянии 10 мм. Сверлят в детали отверстия диаметром 6,8 мм и нарезают в них резьбу 1М8Х1. Зачищают до металлического блеска поверхность накладки, соприкасающуюся с деталью. Обезжиривают поверхности детали и накладки, а затем наносят на них тонкий слой эпоксидного состава. После этого зачищают подтекания и наплывы эпоксидной композиции и проверяют качество ремонта. 3. Способы восстановления деталей Заделка трещин в корпусных деталях. Эту операцию выполняют слесарно-механическими способами: штифтованием, фигурными вставками и постановкой заплат. Заделка трещин Штифтованием - весьма трудоемкая операция и требует высокой квалификации слесаря. Ее используют при ремонте деталей, к которым предъявляются условия герметичности (корпуса коробок передач, задних мостов, водяных рубашек блоков цилиндров). Сущность этого способа состоит в том, что трещину по всей ее длине заделывают резьбовыми штифтами.

Последние изготовляют из красной меди или бронзы. Вначале засверливают концы трещины, нарезают в них резьбу и устанавливают штифты. Затем в порядке, указанном на рисунке 2.50, сверлят отверстия и устанавливают остальные штифты. Концы штифтов рекомендуется расчеканивать, а отремонтированные поверхности - пропаивать. Трещины длиной 50 мм и более заделывать штифтами не следует.

Рис. 3. Схема заделки трещин штифтами.

Заделка трещин фигурными вставками позволяет восстанавливать не только герметичность детали, но и ее прочность.

Технология ремонта включает получение в детали специального паза и запрессовку в него заранее изготовленной фигурной вставки (рис. 4). К основным деталям оснастки, от которых зависит качество работы, относятся кондуктор для сверления отверстий паза и сама фигурная вставка. Трещины заделывают уплотняющими и стягивающими фигурными вставками, которые изготовляют из малоуглеродистой стали 20 или Ст. 3.

Рис.4 Типы фигурных вставок: а и б — уплотняющие; в, г, д, И Е — стягивающие; ж — сверление отверстий поперек трещины.

Заделка трещины уплотняющими фигурными вставками заключается в следующем.

Отступив от конца трещины в сторону ее продолжения на 4 … 5 мм, сверлят отверстия диаметром 4,6 мм для деталей с толщиной стенки до 12 мм и диаметром 6,6 мм свыше 12 мм на глубину соответственно 3,5 и 6,5 мм.

Затем последовательно вдоль трещины сверлят также отверстия с помощью специального кондуктора. Последний переставляют и фиксируют каждый раз по просверленному отверстию. Кроме того, выполняют отверстия и поперек трещины - по два с каждой стороны через каждые пять отверстий.

Устанавливают в паз сначала поперечные, а затем продольные вставки, смазав предварительно торцовые и боковые поверхности эпоксидным Компаундом, И расклепывают их.

Заделка трещины стягивающими фигурными вставками аналогична способу, рассмотренному выше. Фигурный паз под стягивающую фигурную вставку изготовляют только поперек трещины. С помощью специального кондуктора сверлят шесть отверстий диаметром 3.5 мм на глубину 10 или 15 мм (в зависимости от толщины стенки детали) с шагом больше чем на 0,1… 0,3 мм, располагая три отверстия с одной стороны и три - с другой.

Перемычку между отверстиями удаляют специальным пробойником в виде пластин толщиной 1,8 или 3,0 мм. В полученный паз запрессовывают фигурную вставку, предварительно обезжирив поверхности и смазав их эпоксидным составом.

Трещина стягивается за счет разности размеров шаговмежду осями отверстий фи-гурного паза и фигурной вставки. ‘Данным способом рекомендуется восстанавливать перегородки между цилиндрами блок-картера, корпуса коробок передач и заделывать трещины в головках цилиндров.

Разработан комплект оснастки ОР-11362, в состав которого входят два усовершенствованных кондуктора. Они служат для ремонта наружных стенок деталей и внутренних цилиндрических поверхностей, отличаются от существующих своей универсальностью, простотой устройства и небольшой трудоемкостью при эксплуатации.

Ремонт резьбовых соединений. Работоспособность резьбовых соединений восстанавливают двумя методами: с Изменением первоначального размера Изношенной резьбовой детали (способ ремонтных размеров) и Без его изменения (способы наплавки и заварки, постановки добавочных деталей, замены части детали).

Более прогрессивным считается последний, т. е. без изменения размеров резьбы (под номинальный размер), так как при этом не нарушается взаимозаменяемость и не уменьшается прочность соединения.

Наружную резьбу восстанавливают несколькими способами. Сорванную резьбу (менее 2 ниток) и забоины устраняют прогонкой с помощью резьбонарезного инструмента и слесарной обработки.

Обычно бракуют болты с изношенными головками, сорванную резьбу более 2 ниток, а также изношенную резьбу. При ремонте резьбы на валах заменяют изношенную резьбовую часть детали или наплавляют металл на поверхность различными способами.

Основным недостатком наплавки следует считать снижение усталостной прочности детали (от 10 до 30%) и возможность прожога тонкостенных деталей. Резьбовые отверстия имеют следующие основные дефекты: срыв, забитость, смятие и выкрашивание отдельных витков, износ по внутреннему и среднему диаметрам и др. Для их ремонта применяют различные способы (рис. 5).

Основной недостаток заварки отверстий с последующим сверлением и нарезанием резьбы номинального размера - большая зона термического влияния, что приводит к отбелу чугуна, образованию трещин и короблению, изменению структуры материала и снижению прочности резьбы почти в два раза. Нарезание резьбового отверстия на новом месте возможно только в том случае, когда его расположение может быть изменено без нарушения взаимозаменяемости соединения (ступицы барабана и т. п.).

Стабилизацию резьбовых соединений полимерной композицией используют при суммарном износе соединения шпилька - корпус не более 0,3 мм. Установка спиральной вставки при ремонте ответственных деталей и агрегатов получила широкое применение.

Рис. 5. Способы ремонта резьбовых соединений

Наблюдаемое в настоящее время в России становление машиностроительной индустрии, обеспечивающей реализацию технологических процессов производства полимерной тары и упаковки, как и всякая новация, сопровождается появлением всякого рода проблем, на которые и хотели бы обратить ваше внимание.

Появление новой области промышленной индустрии обусловило и появление специальной терминологии, которая достаточно широко, но, к сожалению, не всегда правильно употребляется, даже в среде специалистов. Такая ситуация создаёт вполне определённые трудности не только в восприятии различного рода информационных материалов о полимерной упаковке и оборудовании для её производства, но, что ещё более неприемлемо, зачастую вводит в заблуждение, формируя ложные представления по тем или иным аспектам, связанным с производством и использованием полимерной упаковки. Попробуем разобраться с основными определениями, понятиями и экономическими категориями, сопровождающими процессы производства полимерных упаковочных средств и оборудование для их реализации.

Если обратиться к ГОСТ 17527-86 "Упаковка. Термины и определения", то станет понятно, что под упаковкой понимается некий комплекс защитных мер и материальных средств (курсив наш), обеспечивающих подготовку различного рода продукции к транспортированию и её материальную сохранность. Из приведённого определения ясно, что разработчики ГОСТ стремились в одном определении совместить понятие об упаковке как о комплексе технологических процессов, обеспечивающих упаковывание продукции с помощью специального оборудования или вручную, с одной стороны, а с другой - как о материальных средствах (конкретных видах изделий), обеспечивающих защиту продукции от повреждения или потерь в процессе транспортировки, складирования и хранения. Отсюда и совершенно разный смысл, который может вкладываться в термин "упаковка". Не будем обсуждать достоинства или недостатки данного определения, но отметим тот факт, что оно совсем не затрагивает такого понятия как "тара", которая является неотъемлемым, а иногда и единственным элементом (средством) упаковки, и также представляющая собой конкретные виды изделий для размещения продукции. Во многих конкретных случаях достаточно сложно разграничить понятия "тара" и "упаковка", а поэтому в литературе часто пользуются обобщённым понятием, определяемым как тароупаковочное средство. О технологиях производства таких средств из полимерных материалов и оборудовании для их реализации и пойдёт речь ниже.

В мировой практике существует большое разнообразие технологических методов переработки полимерных материалов в тароупаковочные средства, реализуемых на соответствующих видах специального оборудования. Наиболее распространены среди них следующие: литьевое (инжекционное) формование, экструзионно- и инжекционно-раздувное формование, пневмо- и вакуумформование, механотермоформование , а также экструзионные технологии получения листовых и плёночных материалов . Рассмотрим существо этих технологических методов, учитывая, что полимерные тароупаковочные средства изготавливаются из термопластичных полимерных материалов, часто называемых термопластами.

Метод литьевого (инжекционного) формования термопластов (рис.1) заключается в том, что исходный полимерный материал в виде гранул или порошка загружается в бункер литьевой машины, где захватывается вращающимся шнеком (червяком) 3 и транспортируется им вдоль оси пластикационного обогреваемого цилиндра 2 в его сопловую часть, переходя при этом из твёрдого состояния в состояние расплава. По мере накопления необходимого объёма расплава полимера 4 последний впрыскивается за счёт поступательного перемещения шнека через специальное сопло 5 в сомкнутую охлаждаемую литьевую форму 1 . Заполнивший полость формы расплав полимера удерживается в ней какое-то время под давлением и остывает. Далее литьевая форма раскрывается, готовое изделие 6 удаляется из её полости, а цикл формования повторяется.

Метод реализуется с помощью специального оборудования, называемого литьевыми машинами (выпускавшиеся ранее в СССР литьевые машины носят название "термопластавтоматы" ), и имеет ряд преимуществ по сравнению с другими методами формования изделий из полимеров: высокая производительность, высокий уровень механизации и автоматизации реализуемого процесса, отсутствие этапа получения заготовки для формования изделий, небольшое количество отходов, возможность формования изделий с практически любым заданным распределением толщины стенок. К недостаткам следует отнести невозможность формования полых изделий закрытого типа (бутылок, канистр, и т. п.) и крупногабаритных изделий. Вместе с тем, как ни один другой, этот метод имеет хорошо развитую теоретическую базу, научно обоснованные и широко применяемые в практике методы расчёта и конструирования формующего инструмента для его реализации, обеспечивающие производство изделий с задаваемыми параметрами.

Реализация метода экструзионно-раздувного формования полимерной тары и упаковки (рис.2) заключается в следующем: исходный полимерный материал в виде гранул или порошка пластицируется вращающимся шнеком экструдера (червячного пресса) в его обогреваемом цилиндре и продавливается (экструдируется) через формующий инструмент - кольцевую экструзионную головку 1 , выходя из него в виде трубчатой (рукавной) заготовки 2 и попадая в пространство между разомкнутыми половинами охлаждаемой раздувной формы 4 , смонтированными на подвижных плитах приёмного устройства. По достижению заготовкой определённой длины полуформы смыкаются с захватом заготовки и её раздуванием сжатым газом, подаваемым в полость заготовки через раздувной ниппель 3 . После охлаждения раздувные формы размыкаются, и готовое полое изделие 5 снимается с раздувного ниппеля. Далее цикл формования повторяется.

Данный метод обладает рядом преимуществ: простота технологии и возможность полной автоматизации процесса формования, высокая производительность в сочетании с возможностью совмещения производства тары в одном потоке с производством затариваемой продукции, её расфасовкой, укупоркой, этикетированием тары и т. п., относительно невысокая стоимость технологического оборудования и формующего инструмента (раздувных форм, экструзионных головок). К основным недостаткам метода следует отнести следующее: его реализация протекает в два этапа (получение трубчатой заготовки и её последующее раздувное формование в изделие), что требует наличия двух типов формующего инструмента (экструзионной головки для получения заготовки и раздувной формы); получаемые изделия обладают значительной разнотолщинностью (неоднородностью толщины стенок); наличие технологических отходов. Однако достоинства и технико-экономические показатели метода устойчиво обеспечивают не только "выживаемость", но и его развитие в условиях рынка. Так, например, в последнее время появились сведения о новых разновидностях метода экструзионно-раздувного формования и формующих элементах оборудования для их реализации. Отдельными исследованиями показано, что, например, принудительное растяжение заготовки в процессе её раздувания в сочетании с интенсивным охлаждением изделий приводит к изменениям в структуре полимеров, влияющим на их эксплуатационные характеристики (прочность, газопроницаемость, теплопроводность и т.п.). Однако пока эти разновидности не получили широкого распространения в производстве упаковки.

Разнотолщинность полимерной тары и упаковки, получаемых методом экструзионно-раздувного формования, обусловлена несколькими причинами. Одна из них заключается в гравитационной вытяжке заготовок в процессе их экструзии через формующий инструмент. Для борьбы с этим явлением разработано несколько способов. Например, для снижения гравитационной вытяжки заготовок оптимизируют скорость экструзии заготовок. Широко также применяется "программирование" заготовки, когда её гравитационная вытяжка компенсируется за счёт целенаправленного изменения толщины стенки последней в процессе экструзии. Для этого используются экструзионные головки специальных конструкций, позволяющие в процессе экструзии по определённой программе управлять шириной формующего кольцевого зазора головки. Успех "программирования" заготовки зависит от корректности решения задачи о её гравитационной вытяжке, представляющего собой функцию управления формующим зазором экструзионной головки. В соответствии с этой функцией программируются командно-задающие устройства, управляющие работой экструзионно-раздувных агрегатов.

Управление формующим зазором инструмента (кольцевой экструзионной головки) используется и для получения "программированных" трубчатых заготовок, обеспечивающих производство изделий с заданным распределением толщины их стенок. Задача определения функции управления формующим зазором головки в этом случае гораздо сложнее, чем в предыдущем. На практике функцию управления подбирают опытным путём при формовании каждого конкретного изделия.
С этой целью сначала экструдируют заготовку с постоянной толщиной стенки, нанося на её поверхность маркировку, а затем раздувают её в изделие. Полученное изделие разрезают и анализируют распределение толщины стенок, сравнивая с заданным. Затем вся процедура повторяется, но с той разницей, что при экструзии заготовки за счёт изменения зазора формующего канала головки увеличивают или уменьшают толщину стенки заготовки в необходимых (согласно маркировке) местах в соответствии с результатами предыдущего эксперимента. Полученное изделие вновь подвергают анализу, и так продолжают до тех пор, пока распределение толщины стенок в получаемом изделии не будет соответствовать заданному. Такая процедура, повторяемая иногда до десятка и более раз, требует определённых трудозатрат, расхода сырья, тепло- и энергоносителей. Более того, зачастую оказывается, что спроектированная конструкция изделия вообще не позволяет отформовать его с заданным распределением толщины стенок.
Ещё одна важная практическая проблема, которую приходится решать при реализации рассматриваемого метода состоит в необходимости учёта явления высокоэластического восстановления, наблюдаемого при экструзии заготовок и заключающегося в изменении геометрических размеров ("разбухании") экструдата по отношению к геометрическим размерам формующего канала инструмента. Не вдаваясь в анализ теоретических представлений о существе этого процесса и способах его описания, подчеркнём лишь актуальность учёта этого явления с точки зрения расчёта и конструирования геометрических параметров профилирующих элементов (дорнов и мундштуков) экструзионных головок, обеспечивающих получение заготовок с заданными геометрическими параметрами.

Метод инжекционно-раздувного формования заключается в том, что на первой стадии процесса методом литьевого формования (см. выше) получают трубчатую заготовку, называемую преформой, которую затем раздувают в полое изделие. Данный метод может осуществляться по двум технологическим схемам. Первая из них предусматривает раздувное формование полученных заготовок сразу, после стадии литьевого формования. Для этого литьевые машины, обеспечивающие формование заготовок, оснащаются дополнительным узлом, в котором осуществляется раздувание заготовок в изделия. В этом случае отливаемые трубчатые заготовки, остающиеся на полых сердечниках, после раскрытия литьевой формы переносятся в узел раздувного формования, оснащённый раздувными формами, в котором и происходит раздувание заготовок в изделия. В соответствии со второй схемой (рис.3) стадии получения заготовок и их раздувного формования в изделия осуществляются отдельно друг от друга. В этом случае для получения преформ применяются обычные литьевые машины, оснащённые формующим инструментом, но стадия раздувного формования преформ в изделия осуществляется на специальных раздувных линиях, содержащих бункер-накопитель, устройство для ориентации и перемещения заготовок, устройство для разогрева заготовок 1 , узел раздувного формования разогретых заготовок 2 в изделия 5 , оснащённый раздувными полуформами 4

И раздувным ниппелем 3 . К преимуществам данного метода следует отнести высокую степень механизации и автоматизации, а также высокую производительность оборудования: линии для раздувного формования полых изделий из инжекционных заготовок, выпускаемые фирмами "Сидель" (Франция), "Крупп-Каутекс" (Германия), позволяют производить от нескольких сотен до нескольких десятков тысяч изделий в час. Недостатки этого метода формования заключаются в высокой стоимости основного технологического оборудования и формующего инструмента, используемого для его реализации; во-вторых, промышленном использовании практически пока только одного полимерного материала - полиэтилентерефталата. Кроме того, производимые изделия также обладают разнотолщинностью.

Метод пневмо - и вакуумформования полимерных изделий (рис.4) заключается в том, что закреплённая по контуру в зажимном устройстве 4 и установленная над формой (формующей матрицей) 3 плоская (листовая или плёночная) заготовка 1 разогревается нагревательным устройством 2 до определённой температуры, а затем под действием перепада давления, создаваемого между поверхностями заготовки, происходит её формование в изделие 5 . Известно много разновидностей данного метода, в которых перепад давлений обеспечивается различными способами. Наибольшее распространение получили два из них: создание избыточного пневматического давления над заготовкой и вакуумирование объёма полости под ней.

Данный метод реализуется на различных типах вакуумформовочных машин, установках для механопневмоформования и разного рода нестандартном оборудовании. К его основным достоинствам следует отнести возможность производства крупногабаритных изделий, простоту технологии, относительно невысокую стоимость основного оборудования и формующего инструмента. Основные недостатки связаны с невысокой производительностью, наличием вспомогательных технологических операций (раскрой и вырезка заготовок для формования, механическая обработка готовых изделий), зависимостью от наличия исходных заготовок и достаточно большим количеством технологических отходов. Развитие и совершенствование метода направлено на создание автоматизированных машин и линий, обеспечивающих высокую производительность и отсутствие дополнительной механической обработки изделий в сочетании с их удовлетворительным качеством.

Метод механотермоформования (рис.5) отличается от метода пневмо- и вакуумформования только тем, что формование изделия 5 из плоской заготовки 1 осуществляется за счёт поступательного перемещения формующего пуансона 3 , вытягивающего предварительно нагретую устройством 2 заготовку, закреплённую в зажимном устройстве 4 .

Метод реализуется на вакуумформовочных машинах, специальном штамповочном оборудовании и линиях производства тары из рулонных материалов. Соответствующие современные автоматические линии (например, германской фирмы "Иллиг") характеризуются очень высокими параметрами: скорость движения рулонного материала достигает нескольких десятков метров в минуту, а штучная производительность - до десятков тысяч изделий в час. Это обеспечивает конкурентоспособность метода даже по отношению к литьевому формованию изделий из полимеров. К основным его недостаткам следует отнести зависимость от наличия листового или рулонного материала, относительно большое количество отходов и ощутимую разнотолщинность получаемых изделий.

Экономическая целесообразность той или иной технологии определяется, прежде всего, серийностью производства изделия, что наглядно демонстрируется сравнительными данными, приведёнными в таблице, где за относительные условные единицы капитальных затрат и себестоимости производства 20-литровой ёмкости из полиэтилена приняты параметры, соответствующие её формованию пневмовакуумным методом.

Кроме рассмотренных технологических методов, обеспечивающих, как правило, производство жёстких видов полимерной тары и упаковки, существуют технологии производства мягких упаковочных средств, к которым относятся полимерные плёнки и изделия из них (пакеты, мешки и т.п.). Заметим, что в популярной литературе достаточно часто понятие "полимерные плёнки" связывают с неким понятием "гибкие упаковочные материалы " . Хотелось бы обратить внимание на бессмысленность последнего понятия вообще: можно говорить лишь о свойстве различных материалов, полимерных в том числе, сопротивляться деформированию, вызываемому внешней нагрузкой. А вот сама сопротивляемость связывается в технике с совершенно чётким и давно известным понятием о жёсткости конструкции (именно конструкции, а не материала), определяемой её геометрией и свойствами материала, из которого она изготовлена. Если говорить о конструкциях, жёсткость которых мала и которые, как следствие, не могут передавать изгибающих моментов, то такие конструкции, изготовленные из металлов, называются безмоментными (безмоментные оболочки, мембраны), а из полимерных материалов - мягкими. Кстати, именно по критерию относительной жёсткости плоские полимерные изделия делятся на листы и плёнки.

Методы производства и экономические
показатели, отн. усл. ед.

Годовой выпуск изделий, тыс. шт.

Инжекционно-раздувное формование:
капитальные затраты …………….

себестоимость …………………….
Пневмовакуумное формование:
капитальные затраты …………….
себестоимость …………………….
Экструзионно-раздувное формование:
капитальные затраты …………….
себестоимость …………………….

Производство полимерных плёнок базируется на экструзионных технологиях , реализация которых имеет две разновидности. Технологию производства рукавных плёнок можно пояснить на примере работы плёночной линии (рис.6) .

Полимерное сырьё в виде гранул из загрузочного бункера 1 захватывается вращающимся шнеком червячного пресса 2 и транспортируется им внутри цилиндра
пресса, расплавляясь и гомогенизируясь. Далее получаемый расплав полимера продавливается вращающимся червяком через кольцевую экструзионную головку 10 , выходя из неё в виде трубчатой заготовки 3 , которая раздувается сжатым газом в рукавную плёнку 4 , охлаждаемую обдувочным кольцом 9 . Полученная рукавная плёнка складывается специальным устройством 5 и "отбирается" тянущим устройством 6 , с которого затем поступает на устройство 8 , обеспечивающее сматывание её в рулон 7 .

Однако не все полимерные материалы способны раздуваться в оболочечные конструкции, и описанная технология не годится для производства плёнок из таких материалов. В таких случаях применяют так называемый плоскощелевой метод, в соответствии с которым расплав полимера экструдируется через плоскощелевую экструзионную головку в виде полотна, которое "калибруется" в зазоре двух- или многовалковых гладильных каландров и окончательно охлаждается на рольганге (иногда и путём водяного орошения). Существующие технологии производства полимерных плёнок обеспечивают получение как однослойных, так и многослойных плёнок; производство последних сопряжено с большими сложностями как технологического, так конструктивного характера.

В заключение обратим внимание на один из самых важных аспектов производства полимерных тароупаковочных средств, которому, даже в специализированных отечественных периодических изданиях не уделяется должного внимания, что не поддаётся никакому разумному объяснению. Речь о том, что ни одно тароупаковочное полимерное средство не может быть изготовлено без формующего инструмента, которым должен быть оснащён тот или иной тип технологического оборудования. Производители же оборудования, как правило, формующим инструментом его не комплектуют (исключение составляют лишь плёночные линии). Эта ситуация вполне понятна и объяснима: производитель оборудования не может позволить себе заранее проектировать, а тем более изготавливать формующий инструмент "на все случаи жизни". Более того, в зависимости от сложности проектируемого к производству изделия, выбранной технологии его изготовления стоимость формующего инструмента может достигать уровня стоимости самого технологического оборудования. Например, оснащение экструзионно-раздувного агрегата угловой экструзионной головкой, обеспечивающей "программирование" толщины стенки экструдируемой заготовки, почти вдвое увеличивает его стоимость. В индустриально развитых странах эта проблема решена - там уже давно существуют специализированные фирмы, занимающиеся вопросами проектирования и изготовления формующего инструмента для переработки полимеров. У нас, в России, решение этой проблемы находится пока в зачаточном состоянии. Это приводит к тому, что проектируемый не всегда профессионально подготовленными специалистами формующий инструмент не может обеспечить производство изделий, качество которых отвечало бы мировым стандартам. Кроме того, не следует забывать, что проектируемый формующий инструмент для производства того или иного вида изделий во многом, если не вообще, определяет выбор типоразмера оборудования. Отсюда следует, что выбор оборудования и проектирование формующего инструмента - неразрывно связанные задачи, решение которых должно оптимизировать производственный процесс. В противном случае формующий инструмент либо вообще нельзя установить на оборудование, либо оно работает не на полную технологическую мощность, снижая экономические показатели производства.

Изложенное показывает, что производство тары и упаковки из полимерных материалов - весьма сложный, многоуровневый процесс, успешная реализация которого требует глубокой профессиональной подготовки не только в области экономики и технологий переработки полимеров, но прежде всего в области конструирования оборудования и формующего инструмента.

Изготовляют методом литья под давлением втулки подшипников скольжения и другие детали. Основными технологическими свойствами пластмасс являются: текучесть способность материала заполнять форму при определенной температуре и давлении; усадка уменьшение размеров готовой детали по сравнению с соответствующими размерами прессформы; скорость отверждения которая зависит от свойств и соотношения смолы и отвердителя а также температуры при которой происходит процесс отверждения. Поликапроамид обладая достаточной прочностью и стойкостью...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ МАШИН С ПРИМЕНЕНИЕМ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Виды полимерных материалов и область их применения

При производстве, техническом обслуживании и ремонте машин широко используются полимеры, пластические массы и другие искусственные композиционные материалы.

Полимеры — это высокомолекулярные органические соединения искусственного или естественного происхождения, имеющие обычно аморфную структуру.

Пластмассы — композиционные материалы, изготовленные на основе полимеров, способные при заданных температуре и давлении принимать определенную форму, которая сохраняется в условиях эксплуатации. В зависимости от числа компонентов пластмассы бывают однокомпонентные (простые) и многокомпонентные (композиционные). Простыми являются, например, полиэтилен, полистирол, состоящие из синтетической смолы. В композиционных пластмассах (фенопласты, аминопласты и др.) смола является связующим для других компонентов. Ими являются наполнители, пластификаторы, отвердители, ускорители (активаторы), красители, смазочные вещества и другие компоненты, придающие пластмассе необходимые свойства.

Доля дополнительных компонентов может достигать 70 %. Это позволяет создавать композиционные материалы, обладающие в соответствии с потребностями производства совокупностью тех или иных свойств: достаточной прочностью, виброустойчивостью, хорошей химической стойкостью против действия кислот, щелочей и других агрессивных сред, высокими фрикционными или антифрикционными, шумопоглощающими, диэлектрическими, теплоизоляционными и другими свойствами.

В ремонтном производстве полимерные материалы применяют для: заделки в деталях трещин, пробоин и раковин; склеивания; восстановления формы и размеров изношенных деталей; герметизации стыков; изготовления быстроизнашивающихся деталей или отдельных их частей.

В зависимости от способности возвращаться под действием температуры в исходное состояние различают термореактивные и термопластичные полимерные материалы.

Термопластичные материалы или термопласты при повышении температуры переходят в пластическое состояние, а при охлаждении восстанавливают свои свойства. Поэтому они могут многократно перерабатываться. Применяя различные термические способы, термопласты наносят на поверхности деталей в виде покрытий различного назначения (антифрикционные, защитные, изоляционные и т.д.). Из некоторых термопластов (полиамидов типа капролактан, АК-7 и др.) изготовляют методом литья под давлением втулки подшипников скольжения и другие детали.

Важным эксплуатационным свойством термопластов является термостабильность — время, в течение которого термопласт может выдерживать определенную температуру, сохраняя свои свойства. Основными технологическими свойствами пластмасс являются: текучесть (способность материала заполнять форму при определенной температуре и давлении); усадка (уменьшение размеров готовой детали по сравнению с соответствующими размерами пресс-формы); скорость отверждения, которая зависит от свойств и соотношения смолы и отвердителя, а также температуры, при которой происходит процесс отверждения.

При ремонте широко применяются полиэтилен, поликапроамид, фторопласт и другие термопласты.

Полиэтилен отличается хорошей пластичностью, которая сохраняется даже при низкой температуре, что позволяет применять его для изготовления и восстановления гибких изделий (труб) и защитных покрытий.

Поликапроамид, обладая достаточной прочностью и стойкостью против воздействия щелочей и различных горючесмазочных материалов, применяется в качестве конструкционного материала для изготовления шестерен и втулок, нанесения на детали износостойких покрытий.
Фторопласт , благодаря высокой температуре плавления (327 °С), низкому коэффициенту трения, высокой износостойкости и практически отсутствию адгезии при контакте с металлами, применяется для изготовления втулок подшипников скольжения, работающих при температуре до 250 °С. По химической стойкости он превосходит все материалы, что обуславливает широкую область его применения в различных агрессивных средах. Отсутствие адгезионного взаимодействия с металлами затрудняет применение фторопласта для нанесения на них защитных покрытий напылением. Поэтому обычно применяют механическое крепление фторопластовых накладок к восстанавливаемым изделиям.

Термореактивные материалы или реактопласты (текстолит, волокнит, стекловолокнит, эпоксидные композиции и др.) отличаются тем, что при нагревании в результате химических реакций они необратимо переходят в твердое, неплавкое и нерастворимое состояние. При повторном нагревании они могут разрушиться. Из термореактивных пластмасс при ремонте широко применяются композиции, включающие эпоксидные (ЭД-16, ЭД-20), фенольно-формальдегидные и другие смолы, отвердители, пластификаторы и иные компоненты.

При смешивании с отвердителем (полиэтиленполиамин, ароматические амины и др.) эпоксидная смола переходит в твердое и нерастворимое состояние. Этот процесс в зависимости от отвердителя может происходить при различной температуре. Например, при использовании в качестве отвердителя фтористого бора отвердение происходит при отрицательной температуре. С увеличением доли отвердителя повышается хрупкость композиционного материала, а при ее уменьшении процесс отвердения удлиняется, поэтому для получения качественного полимерного материала необходимо соблюдать установленные инструкциями рекомендации по соотношению смолы и отвердителя. Это относится и к другим компонентам полимерного состава.

Пластификаторы (дибутилфталат, триэтиленгликоль, тиокол и др.) служат для повышения ударной вязкости и прочности композиционного материала, снижения его чувствительности к термоциклическим напряжениям, придания эластичности и других требуемых свойств.

Наполнители неорганические (металлический порошок, графит, кварцевая и слюдяная мука, тальк, асбест, волокна углерода, стекловолокно, стеклоткань и др.) и органические (бумага, целлюлоза, древесная мука, хлопчатобумажная ткань и др.) позволяют управлять физико-механическими свойствами композиционного материала для повышения прочности, износостойкости, теплостойкости и т.д. Например, изменяя соотношение между содержанием металлических и неметаллических порошков, можно уменьшить усадку нанесенного полимерного покрытия и различие в значениях коэффициентов линейного расширения детали и покрытия, а за счет введения графита повысить его износостойкость. Применение волокнистых наполнителей позволяет получать на основе фенольно-формальдегидных смол широко применяемые для изготовления деталей машин волокнит, стекловолокнит и другие материалы повышенной прочности.

Термореактивные пластмассы применяют для заделки вмятин, трещин, пор и раковин в деталях из металлических и неметаллических материалов, для восстановления в корпусных деталях посадочных поверхностей под подшипники, а также изготовления новых деталей.

В зависимости от свойств пластмассы могут перерабатываться в детали в вязкотекучем состоянии (литье под давлением, выдавливание, прессование), в высокоэластичном состоянии (штамповка, пневмо- и вакуум формовка); в твердом состоянии (обработка, резание, склеивание, сварка) и другими методами.

Применение полимерных материалов при ремонте машин по сравнению с другими способами восстановления позволяет на 20—30 % снизить трудоемкость и на 15—20 % себестоимость ремонта, а также исключить сложные технологические процессы, характерные при нанесении металлических материалов и их обработке. Существенно (на 40—50 %) уменьшается расход конструкционных материалов (зачастую дефицитных и дорогих — цветных металлов и нержавеющих сталей) и соответственно — вес деталей. При этом полимерные материалы не снижают усталостную прочность восстановленных ими деталей, что во многих случаях позволяет не только заменить сварку или наплавку, но и восстанавливать детали, которые другими технологическими способами восстановить или невозможно, или невыгодно, или это сопряжено с тяжелыми условиями труда.

Для практического применения полимерных материалов обычно не требуется сложное технологическое оборудование, что важно в условиях ремонтного производства.

Недостатками полимерных материалов по сравнению с металлами являются меньшая прочность, интенсивное старение, низкая теплопроводность и тепловая стойкость отдельных материалов.

Эластомеры и герметики . Для герметизации и восстановления посадок неподвижных соединений применяются эластомеры и герметики, в том числе анаэробные. Эластомеры выпускаются в виде листов толщиной 2—5 мм, из которых на основе ацетона готовят рабочий раствор. Для этого необходимое количество эластомера разделяют на мелкие кусочки, которые заливают в стеклянной емкости расчетным в соответствии с инструкцией количеством ацетона и выдерживают в нем до растворения. Полученный раствор необходимо хранить в плотно закрытых емкостях. Удобны готовые к применению эластомеры на основе резины холодного химического отверждения, которые представляют собой двухкомпонентные материалы, поставляемые в жидком или пастообразном состоянии. Их применяют для восстановления резиновых покрытий деталей, шлангов, изоляции, а также для отливки нестандартных форм манжет, уплотнений и прокладок.

Покрываемая поверхность детали подвергается пескоструйной очистке или шлифованию до полной очистки и придания ей повышенной шероховатости для улучшения сцепления с покрытием. Перед нанесением покрытия подготовленную поверхность обезжиривают специальным средством или ацетоном. Оба компонента наносимого материала (основу и активатор) смешивают между собой для обеспечения однородности смеси и удаления из нее воздуха. При устранении больших трещин и сколов рекомендуется покрытие армировать стеклотканью, что увеличивает его прочность.

Наиболее эффективным герметизирующим материалом являются герметики на основе полимеров и олигомеров. Применяются герметики термопластичные и термореактивные, высыхающие и невысыхающие, полимеризующиеся, вулканизирующие и нетвердеющие.

Таблица 4.11

Анаэробные герметики представляют собой однокомпонентные материалы, которые содержат акриловые и сложные метакриловые эфиры и перекись водорода. Они эффективны для герметизации резьбовых и фланцевых соединений пневматических и гидравлических систем с использованием различных материалов в сопрягаемых поверхностях. При этом кроме герметизации увеличиваются прочность и жесткость соединений, устраняются зазоры (0,2—0,7 мм) и обеспечивается защита поверхностей от коррозии. Время полной полимеризации для разных герметиков от 24 до 72 часов. Начало эксплуатации возможно сразу после отверждения. При выборе марки герметика учитывается зазор между уплотняемыми деталями и температура окружающей среды, которая влияет на вязкость состава.

Анаэробные герметики эффективны также при пропитке (заделке) мелких трещин и пор в заготовках, полученных методами литья и давления, и в сварных швах. В этом случае герметик наносится без применения активатора на очищенную и обезжиренную поверхность с дефектами 2—3 раза через 15—20 мин. Для ускорения отверждения герметика изделие выдерживают при температуре 60—90 °С в течение 0,5—2 ч.

В ремонтном производстве широко применяются анаэробные составы типов ДН, Анатерм, Унигерм и др. Они представляют собой композиции, которые могут длительное время находиться в текучем состоянии и отверждаться при отсутствии контакта с кислородом воздуха. Время отверждения зависит от температуры окружающей среды, а максимальная прочность отвержденного материала достигается через 24 ч.

Эти составы обладают высокой проникающей способностью и поэтому способны заполнять микронеровности и микротрещины в деталях, зазоры в сопряжениях между ними, равные 0,05—0,2 мм. При полимеризации они переходят в твердое устойчивое состояние с образованием прочного соединения, стойкого к изменению температуры в диапазоне -60... +150 °С и агрессивному воздействию окружающей среды. Это позволяет пропитывать и заделывать поры в литых и прессованных заготовках, надежно фиксировать взаимное положение деталей в различных соединениях (гладких плоских и цилиндрических, резьбовых, профильных и др.). При этом сопрягаемые детали могут быть изготовлены из разных материалов в любых сочетаниях.

Весьма эффективно применение анаэробных материалов при сборке неподвижных соединений. Например, при установке подшипников с применением анаэробного материала не только устраняются коррозионные и другие разрушения посадочных поверхностей, но также обеспечивается беззазорное сопряжение с ними колец подшипников. После снятия подшипника, установленного таким образом, посадочная поверхность сохраняется чистой, и при последующем ремонте требуется лишь повторно нанести герметик без ее обработки.

Анаэробные материалы не взаимодействуют с водой, растворителями, смазочными материалами и обеспечивают надежную антикоррозионную защиту уплотняемых деталей. Это позволяет значительно повысить надежность конструкций. Важно и то, что большинство из этих материалов являются экологически безопасными.

Перед нанесением анаэробного герметика деталь должна быть тщательно очищена от загрязнений соответствующими методами (механическим, химическим и др.) и обезжирена.

Клеевые материалы . Клеевые материалы часто являются растворами различных синтетических смол в органических растворителях. Их выпускают в виде смешиваемых перед использованием компонентов, а также в виде пленки, порошка, гранул. В ремонтном производстве чаще применяются эпоксидные клеевые материалы, что обусловлено их высокой адгезией и нейтральностью по отношению к склеиваемым материалам, малой усадкой, устойчивостью к коррозионным и другим воздействиям. Армирование стекловолокном расширяет область применения этих клеевых материалов и позволяет устранять большие по размерам пробоины и трещины в деталях, работающих при температуре -70... +120 °С. Недостатком эпоксидных клеевых композиций является токсичность компонентов.

Широко применяются также клеи акриловые (типов АН, КВ), цианакриловые (типов ТК, КМ, МИГ) и силиконовые, которые позволяют прочно соединять между собой детали из различных материалов, уплотнять зазоры и трещины, снижать вибрацию и шум, изготавливать уплотнения и прокладки любой формы. Особенностью цианакриловых клеев является быстрое отверждение (для большинства их марок время схватывания составляет 1 мин). Рабочая температура клеевых соединений может изменяться от -50 до +250 °С.

Применение клеевых композиций позволяет склеивать детали, устранять трещины длиной до 150 мм, пробоины площадью до 2,5 см 2 , сколы, коррозионно-эрозионные и др. разрушения, а также создавать износостойкие графитовые и иные покрытия.

По сравнению со сваркой можно соединять детали из разнородных материалов при отсутствии внутренних напряжений и коробления с применением более простого технологического оборудования, при меньшей трудоемкости и стоимости ремонта.

Металлополимеры представляют двухкомпонентные композиционные материалы, которые на 70—80 % состоят из мелкодисперсных металлических порошков (никель, хром, цинк) и специальных олигомеров (полимеров с низкой молекулярной массой), образующих при отверждении полимерные покрытия повышенной прочности за счет использования поверхностной энергии материалов. Металлополимеры отличаются высокой адгезией к различным металлическим и неметаллическим материалам, включая пластмассы, за исключением фторопласта и полиэтилена, что позволяет производить ими высококачественную холодную молекулярную сварку, относящуюся к прогрессивным высокотехнологичным способам восстановления деталей машин. Она выполняется с помощью композиционных металлополимерных материалов, которые могут подвергаться обработке резанием.

Кроме того, эти материалы надежно защищают детали машин от коррозии и эрозии в агрессивных средах с повышенной влажностью и испаряемостью. Их рабочая температура находится в диапазоне -60... +180 °С при максимальной термостойкости до 200—220 °С. Предел прочности современных металлополимеров составляет (МПа): при сжатии 120—145, при изгибе 90—110, на сдвиг 15—25. Важными преимуществами металлополимерных материалов является отсутствие изменения объема при полимеризации, их эластичность, исключающая негативное влияние различия в коэффициентах линейного расширения материалов детали и покрытия.

Благодаря этим свойствам металлополимеры позволяют создавать методом холодной сварки высокопрочные соединения различных материалов, восстанавливать размеры, форму и целостность деталей, наносить на их рабочие поверхности износостойкие покрытия с эффектом самосмазывания, решать другие задачи ремонта.

Металлополимеры применяются для устранения аварийных течей в трубопроводах и емкостях, восстановления посадочных мест под подшипники качения на валу и в корпусе, резьбовых соединений и «разбитых» шпоночных пазов, устранения дефектов чугунного и стального литья (раковины, трещины), ремонта корпусных деталей (выбоины, сколы и т.д.), а также для защиты деталей машин от коррозии, абразивного износа, эрозии.

Преимущества применения металлополимеров :

— не требуются термическое или механическое воздействие на восстанавливаемую поверхность, специальное технологическое оборудование и защитная среда;

— экологически безопасные условия труда, так как применяемые компоненты металлополимера не содержат и не образуют при взаимодействии между собой и с покрываемым материалом летучие токсичные вещества;

— пожаробезопасность ремонтно-восстановительных работ.

Нанесение полимерных материалов на детали

В ремонтном производстве полимерные покрытия наносят на детали газопламенным методом, а также расплавлением порошка в псевдоожиженном состоянии.

Газопламенное напыление порошковых полимерных материалов осуществляется на установках аналогично напылению порошковых металлических материалов. Покрываемые поверхности тщательно очищают от всех видов загрязнений и окислов, а поверхности, не подлежащие покрытию, защищают экранами из фольги или асбеста. Перед напылением деталь покрывают теплоизоляционным грунтом и нагревают газовой горелкой до температуры, превышающей температуру плавления полимерного порошка, что предохраняет покрытия от растрескивания после охлаждения.

При напылении порошок полимера подается в газовое пламя инжекторной газовой горелки и струей сжатого воздуха под давлением 0,4—0,6 МПа в расплавленном состоянии наносится на поверхность детали. Порошок расплавляется под действием газового пламени и предварительно нагретого изделия. Используются специальные порошки, например, ТПФ-37, ПФН-12, а также полиэтилен, капрон, полистирол и различные составы из этих и других полиамидных материалов с наполнителями. Толщина покрытия может достигать 10 мм. За один проход покрывается поверхность шириной 20—70 мм. После нанесения покрытия его дополнительно прогревают пламенем горелки или в нагревательном устройстве и для уплотнения прокатывают металлическим валиком.

При напылении неметаллических материалов деталь часто не подогревают, а покрывают специальным клеем, обеспечивающим более прочное сцепление покрытия с изделием.

При ремонте машин газопламенное напыление полимерных материалов применяют для заделки мелких дефектов деталей и следов сварки, нанесения антифрикционного, антикоррозионного, электроизоляционного, теплоизоляционного и декоративного покрытий.

Нанесение покрытия в псевдоожиженном слое порошка . Полимерное покрытие на деталях создается за счет расплавления порошка с размером частиц 0,1—0,15 мм, находящегося в псевдоожиженном состоянии, под действием тепла предварительно нагретой детали. Разновидности этого метода различаются способом перевода наплавляемого порошка в псевдоожиженное состояние. Из них получили применение вихревой, вибрационный и комбинированный способы.

При вихревом методе псевдоожиженное (взвихренное) состояние порошка создается потоком воздуха или инертного газа. Оборудование представляет собой камеру 2 (рис. 4.65), которая разделена на две части пористой перегородкой 6 и фильтром 5, обеспечивающими поступление воздуха из нижней части камеры в верхнюю. В верхней части камеры на фильтр насыпают слой наплавляемого порошка, толщина которого должна быть не менее 100 мм. Фильтр 5 препятствует засорению порошком отверстий в перегородке и пересыпанию его из верхней части камеры в нижнюю.

Рис. 4.65. Схема установки для вихревого напыления полимерного покрытия: 1 — баллон; 2 — камера; 3 — порошок; 4 — напыляемая деталь; 5 — тканный фильтр; 6 — пористая перегородка; 7 — вытяжное устройство; 8 — отсасывающее устройство

Из баллона 1 в нижнюю часть камеры подают под давлением 0,1—0,2 МПа инертный газ, который, пройдя через перегородку и фильтр, приводит порошок 3 во взвешенное (псевдоожиженное) состояние.

Восстанавливаемую деталь 4, нагретую до температуры выше температуры плавления данного полимера, помещают в псевдоожиженный слой полимерного порошка, который, контактируя с нагретой деталью, расплавляется, образуя на ней тонкослойное покрытие. Места, не подлежащие покрытию, необходимо изолировать фольгой, жидким стеклом или другим легко удаляемым материалом.

В зависимости от температуры нагрева детали, времени нахождения ее в порошке, теплопроводности и температуры его плавления толщина покрытия может составлять 0,08—1 мм. Качественное покрытие формируется независимо от сложности формы детали, что является существенным преимуществом данного способа. Он находит применение для создания антифрикционных и защитных покрытий.

Для снятия внутренних напряжений деталь после нанесения покрытия нагревают и выдерживают в масле при температуре 150—160 °С в течение 15—60 мин.

Вибрационным способом псевдоожиженное состояние наплавляемого порошка создается за счет сообщения камере специальным вибратором колебаний с частотой 50—100 Гц. Это обеспечивает более равномерное и качественное покрытие толщиной до 1,5 мм. По сравнению с вихревым вибрационный способ является более экономичным, так как не требуется сжатый воздух, а благодаря тому, что деталь не охлаждается потоком газа, исключены связанные с этим потери тепла, накопленного ею при нагревании перед нанесением покрытия. За счет этого, при прочих равных условиях, обеспечивается большая толщина формируемого покрытия. После нанесения покрытия деталь помещают в камеру для оплавления.

Комбинированный (вибровихревой) способ представляет собой сочетание рассмотренных выше. При этом способе камере с псевдоожиженным газом порошком сообщают с помощью специального устройства колебания с частотой 50—100 Гц и амплитудой до 10 мм. Благодаря этому повышается качество покрытия и обеспечивается возможность наносить покрытия большей толщины, чем при вихревом или вибрационном способе.

Достоинства вибровихревого метода по сравнению с вихревым и вибрационным следующие:

— надежное и более равномерное псевдоожижение порошка по всему объему, включая порошки, склонные к слипанию и комкованию;

— увеличение до 2 раз отношения объема порошка в псевдоожиженном состоянии к объему насыпного порошка;

— хорошее псевдоожижение смеси порошков полимеров и наполнителей и отсутствие их расслоения во время формирования покрытия;

— равномерная по высоте детали и увеличенная при тех же условиях толщина покрытия.

Восстановление целостности деталей и герметичности разборных соединений

С применением полимерных материалов восстанавливают целостность деталей путем заделки дефектов в виде трещин и пробоин или склеивания.

Трещины в корпусных деталях устраняют с помощью клеевых композиций на основе эпоксидных смол и других материалов. Они выбираются в зависимости от материала детали и размеров трещин. Существуют клеевые составы для ремонта чугунных, стальных, алюминиевых и пластмассовых деталей, некоторые из них указаны в табл. 4.11. При восстановлении деталей, работающих в условиях вибрации, в эпоксидные составы вводят до 30 % тонко измельченной слюды и резины.

Применение полимерных материалов дает хорошие результаты только при тщательной подготовке поверхности в зоне дефекта. Для обеспечения надежной адгезии полимера с деталью ее поверхность должна быть тщательно очищена от загрязнений, зачищена и обезжирена. Для улучшения сцепляемости полимера с поверхностью детали на ней создают повышенную шероховатость. Следы краски и коррозии на подготовленной поверхности не допускаются.

Типовая технология заделки трещин в корпусной детали включает следующие операции:

1. Подготовка детали к ремонту. Она включает: засверливание на концах трещины отверстий диаметром 2,5—3 мм; разделывание фаски (при толщине стенки свыше 1,5 мм) вдоль трещин под углом 60—70° на глубину 1—3 мм; зачистка до металлического блеска прилегающей к трещине поверхности шириной 25—30 мм; обезжиривание зачищенной поверхности. При длине трещин до 50 мм фаску допускается не снимать.

2. Приготовление полимерного материала в соответствии с рекомендациями для данного материала. Например, эпоксидная композиция готовится в следующей последовательности: разогревание эпоксидной смолы до жидкого состояния; смешивание ее в определенной пропорции с пластификатором; введение в состав необходимых наполнителей и тщательное перемешивание. Непосредственно перед применением в эпоксидный состав добавляют и тщательно перемешивают отвердитель. Полученный состав должен быть использован в течение 20—30 мин.

3. Нанесение полимерного состава, соответствующего материалу детали, и втирание его в трещину. Эпоксидный состав затвердевает при комнатной температуре или с применением дополнительного нагревания после частичного отверждения и выдерживания при температуре 80 °С. Нагревание детали сразу после нанесения состава не допускается, так как приводит к его отеканию, неравномерности по толщине и недостаточной прочности.

4. Испытание на герметичность заделанной трещины под давлением 0,3—0,4 МПа. Просачивание воды через заделанную трещину не допускается.

Для повышения прочности соединения при длине трещин более 30 мм применяют стеклотканевые накладки, которые укладывают в несколько слоев с нанесением между ними клея. Предварительно их очищают в кипящей воде в течение 2—3 ч и обезжиривают ацетоном. Первая накладка должна перекрывать трещину на 15—20 мм, а каждая последующая — перекрывать контур предыдущей накладки на 5—10 мм. Каждую накладку прокатывают валиком для удаления из-под нее воздуха и уплотнения соединения. Количество накладок зависит от длины трещины и обычно не превышает трех. Отставание накладок не допускается.

При длине трещины более 150 мм применяют дополнительно металлическую накладку толщиной 1,5—2 мм с перекрытием трещины на 40—50 мм. Ее устанавливают на клеевой состав с последующим механическим скреплением с восстанавливаемой деталью винтами, расположенными на расстоянии 50—70 мм друг от друга.

Детали с пробоинами также ремонтируют с установкой накладок. При диаметре пробоин до 25 мм их изготавливают из стеклоткани, а при большем диаметре применяют металлические пластины, которые должны плотно прилегать к детали. Для этого их прикрепляют винтами, а также предусматривают дополнительные сверления в пластине и стенке корпуса, которые заполняются клеевым составом, повышающим после отверждения прочность заделки пробоины.

Рассмотренный способ заделки трещин и пробоин может применяться, если дефекты расположены на плоских поверхностях деталей. На фасонных поверхностях эти дефекты устраняют обычно сваркой или комбинированным способом, когда на сварочный шов для его герметизации наносят слой эпоксидной композиции.

Хорошие результаты при заделке трещин дает применение фигурных стягивающих вставок с последующей герметизацией трещины нанесением полимерного материала.

Склеивание при ремонте машин применяется для соединения между собой частей детали или разных деталей из одинаковых и различных (металлических и неметаллических) материалов. Применяют клеи типов БФ, ВС, ВК, эпоксидные составы и др. Технология склеивания включает подготовку соединяемых поверхностей, нанесения на них клеевого состава, соединение деталей между собой и при необходимости термообработку для полного его отверждения и повышения прочности.

Подготовка поверхностей при склеивании проводится аналогично, как при заделке трещин. Для обеспечения одинаковой толщины клеевого слоя требуется более тщательная пригонка склеиваемых поверхностей друг к другу, а их шероховатость после зачистки должна составлять примерно Rz = 20 мкм для лучшего сцепления с клеем.

Для склеивания металлических деталей между собой применяются клеи БФ-2 и БФ-4, представляющие спиртовые растворы термореактивных смол. Они имеют теплостойкость до 80 °С, а предел прочности клеевого соединения при сдвиге составляет 40—60 МПа. Клей наносят в 2—3 слоя так, чтобы их общая толщина составляла 0,1—0,2 мм. При большей толщине сила сцепления клея с деталью уменьшается в 1,5—2 раза. Склеиваемые детали сжимают между собой под давлением 0,5—1 МПа и в этом состоянии выдерживают при температуре 140—150 °С в течение 0,5—1 ч.

Клей БФ-2 применяют также для сборки неподвижных соединений при зазоре между сопрягаемыми деталями до 0,15 мм. При большей величине зазора используется эпоксидный состав, который наносят в один слой.

Клей ВС-10Т, представляющий раствор синтетических смол в органических растворителях, применяется для приклеивания фрикционных накладок, работающих при температуре -60... +100 °С.

Восстановление неподвижных цилиндрических и резьбовых соединений

Для восстановления цилиндрических соединений типа кольцо подшипника — корпус, цилиндрический стакан — корпус применяют полимерные композиции, эластомеры и анаэробные герметики. Во всех случаях поверхности зачищают до чистого металла, обезжиривают ацетоном и высушивают. Применяют два способа восстановления таких соединений с помощью полимерных материалов.

Первый способ характеризуется тем, что отверждение полимерного материала производится после сборки соединения. Он применяется обычно при зазоре в соединении до 0,2 мм. На поверхность детали наносят полимерный материал (эпоксидный состав А или металлополимер), который выдерживают определенное время на открытом воздухе для предварительного отверждения, собирают соединение, удаляют излишки нанесенного материала, а оставшийся между соединяемыми деталями материал подвергается отверждению. В результате создается беззазорное соединение деталей.

Второй способ отличается тем, что нанесенный полимерный материал обрабатывают, обычно растачиванием, после его отверждения для получения номинального или ремонтного размера восстанавливаемой поверхности. Более эффективным и простым в реализации по сравнению с растачиванием является способ восстановления посадочных поверхностей в корпусных деталях методом размерного калибрования отверстий, покрытых полимерным материалом. Калибрование проводится после частичного его отверждения и позволяет исключить операцию растачивания восстанавливаемого отверстия.

При применении этого способа выполняются следующие основные операции: очистка и обезжиривание восстанавливаемого отверстия; нанесение на подготовленную поверхность полимерного материала толщиной 1—1,5 мм и частичное его отверждение; калибрование восстанавливаемого отверстия; окончательное отверждение нанесенного материала и контроль качества покрытия.

Калибрование полимерного покрытия 1 (рис. 4.66) производится на прессовом оборудовании, специальных стендах или металлорежущих станках (вертикально-сверлильных или токарных) с помощью оправки 2, которую под действием усилия Р проталкивают без относительного вращения через восстанавливаемое отверстие. Оправку предварительно смазывают маслом или техническим солидолом для уменьшения трения.

Метод калибрования позволяет формировать покрытое полимерным составом отверстие под заданный (номинальный или ремонтный) размер соединения деталей, обеспечивая высокую производительность и стабильное качество восстановления.

При ремонте неподвижных подшипниковых соединений (корпус-подшипник, вал-подшипник и др.) часто применяют также эластомеры и герметики. Эластомер наносят послойно с определенным интервалом времени между слоями до получения заданной толщины покрытия. Толщина одного слоя находится в пределах 0,01—0,015 мм, а допускаемая его общая толщина зависит от марки наносимого материала и применяемой технологии. При необходимости проводят термообработку покрытия, режим которой зависит от его состава. Неподвижные соединения с покрытием из эластомера или герметика собирают запрессовкой с натягом 0,01—0,03 мм.

Благодаря малой толщине одного слоя покрытия применение эластомеров эффективно также для восстановления неподвижных соединений при ослаблении посадки, например, между кольцом подшипника или стаканом и корпусом.

При износе посадочного отверстия в корпусной детали эластомер наносят на поверхность наружного кольца подшипника (стакана) до получения необходимой посадки в соединении.

Часто посадочные поверхности в корпусах восстанавливают вклеиванием с помощью эпоксидного состава А изготовленных с необходимой точностью втулок. В этом случае последующая механическая обработка не требуется. Посадочные отверстия восстанавливают также с применением полимерных материалов и свертных втулок. Втулку вклеивают в восстанавливаемое отверстие и после частичного отверждения полимерного материала раскатывают до получения необходимого размера.

Для фиксации колец подшипников в корпусе или на валу с помощью анаэробных герметиков подготовленные поверхности сопрягаемых деталей покрывают одинаковым по толщине слоем герметика. Для повышения точности восстанавливаемого соединения сопрягаемые детали центрируют относительно друг друга с помощью специального приспособления и выдерживают в нем при комнатной температуре, пока анаэробный материал не приобретет прочность, обеспечивающую сохранение относительного положения сопрягаемых деталей вне этого приспособления. В зависимости от марки герметик приобретает полную прочность через 3—24 ч. Марку герметика выбирают в зависимости от зазора в соединении. Например, максимальный зазор в соединении при применении герметика АН-1 составляет 0,07 мм, а герметика АН-6 — 0,7 мм. С увеличением толщины слоя герметика долговечность соединения снижается. Для повышения прочности и расширения технологических возможностей в герметики вводят наполнители.

Для восстановления резьбовых поверхностей и соединений применяются эпоксидные составы, металлополимеры и герметики.

Технология восстановления резьбовых поверхностей методом холодной сварки с помощью металлополимеров отличается простотой и малой трудоемкостью. Резьбовую поверхность эталонного болта смачивают специальной разделительной жидкостью (двухпроцентным раствором поли-изобутилена в бензине) и покрывают металлополимером, например, ремонтно-композиционным материалом. Затем болт ввинчивают в очищенное и обезжиренное восстанавливаемое резьбовое отверстие. Благодаря разделительной жидкости, металлополимер сцепляется только с материалом восстанавливаемой детали. После затвердевания металлополимера болт вывинчивают из отверстия. Высокое качество восстановления резьбовых поверхностей возможно только при правильном выборе полимерного материала исходя из его свойств и условий эксплуатации резьбового соединения.

Сильно изношенные резьбовые отверстия в корпусных деталях часто восстанавливают установкой ввертышей, для более надежного закрепления которых в детали используется эпоксидный состав А.

При небольшом износе резьбовое соединение восстанавливают путем нанесения эпоксидного состава на подготовленные резьбовые поверхности обеих деталей соединения. При износе до 0,3 мм применяют состав Е или анаэробный герметик, а при износе более 0,3 мм — составы Б или В в зависимости от материала детали. Для стопорения резьбовых соединений применяют анаэробный герметик или состав Е. Эффективность использования указанных материалов зависит от соблюдения режима их отверждения и требований к подготовке поверхностей.

Восстановление деталей прессованием

Прессование применяется для ремонта деталей с помощью пластмассы. Восстанавливаемую деталь помещают в пресс-форму, рабочая полость которой имеет размеры новой детали, и в нее подают пластмассу. Для термореактивных пластмасс применяют компрессионное, а для термопластичных — литьевое прессование.

При компрессионном прессовании восстанавливаемую деталь 7 (рис. 4.67) устанавливают с базированием по элементу 6 в нижнюю часть 5 пресс-формы на опору 9. На нижнюю часть устанавливают верхнюю часть 3 пресс-формы и через отверстие 2 засыпают термореактивный порошок, который расплавляют нагревательным устройством 4.

Рис. 4.67. Схема компрессионного прессования: 1 — пуансон; 2 — загрузочное отверстие; 3 — верхняя часть пресс-формы; 4 — нагревательное устройство; 5 — нижняя часть пресс-формы; 6 — базирующий элемент; 7 — деталь; 8 — выталкиватель; 9 — опора; 10 — слой пластмассы

Под действием давления, создаваемого пуансоном 1, расплав порошка заполняет в пресс-форме свободные полости, в результате чего на детали 7 создается пластмассовый слой 10. После охлаждения деталь из пресс-формы удаляется выталкивателем 8.

При литьевом прессовании термопластичный полимерный материал расплавляют в литьевой машине и подают под давлением через литник 1 (рис. 4.68) в пресс-форму, между верхней 2 и нижней 3 частями которой предварительно устанавливают восстанавливаемую деталь 4. Пресс-форму до заполнения полимерным материалом подогревают до температуры 80—100 °С. В результате заполнения свободного пространства в пресс-форме полимерным материалом он образует на детали 4 слой 10 необходимой толщины. Прессованием можно восстанавливать вкладыши подшипников, крыльчатки водяных насосов и т.д.

Особенности механической обработки полимерных покрытий

Особенности механической обработки полимерных покрытий обусловлены их свойствами. Из-за абразивного действия наполнителей износ режущего инструмента при обработке полимерных материалов может быть больше, чем при обработке металлов. Низкая теплопроводность полимерного материала является причиной более интенсивного отвода тепла из зоны резания через режущий инструмент, что требует его надежного охлаждения. Для охлаждения инструмента и одновременного удаления стружки рекомендуется использовать не смазочно-охлаждающую жидкость, а сжатый воздух. Во избежание выкрашивания покрытия под действием сил резания необходимо применять остро заточенные инструменты. Диаметр сверла следует выбирать на 0,5—0,15 мм больше диаметра отверстия, указанного на чертеже, так как диаметр отверстия, просверленного в полимере, обычно уменьшается.

Шлифование полимеров выполняют абразивными кругами со скоростью резания 30—40 м/с. Для обработки термопластов рекомендуется применять не цельные из абразивного материала, а круги, набранные из плотных полотняных, суконных и фланелевых кружков. Диаметр кругов 300—500 мм, толщина 80—90 мм. Их пропитывают абразивной пастой из тонко измельченной пемзы с водой. Шлифование должно вестись при легком прижиме круга к обрабатываемой поверхности, чтобы исключить разогревание покрытия.

Для шлифования термореактивных материалов применяют белый электрокорунд с зернистостью 46 и твердостью СМ-1. Глубина резания до 0,5 мм, скорость перемещения детали 0,5 м/мин, скорость резания 35 м/с.

При использовании полимерных материалов, особенно эпоксидных композиций и синтетических клеев, необходимо строго соблюдать меры техники безопасности, так как многие компоненты, входящие в их состав, токсичны и огнеопасны.

Другие похожие работы, которые могут вас заинтересовать.вшм>

9460. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ МАШИН 9.47 MB
Восстановление детали независимо от степени износа возможно различными экономически целесообразными методами. Выбор конкретного метода зависит в первую очередь от того какие эксплуатационные свойства детали должны быть обеспечены при ее восстановлении. К ним относятся: целостность и масса детали распределение массы между отдельными элементами и ее уравновешенность; сплошность состав и структура материала; усталостная прочность жесткость и другие характеристики детали; точность геометрической формы размеров и относительного...
9476. РЕМОНТ ТИПОВЫХ ДЕТАЛЕЙ И УЗЛОВ МАШИН. ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ 8.91 MB
Высокая экономическая значимость этого при ремонте машин обусловлена тем что восстановлению подвергаются их наиболее сложные и дорогие детали. Виды технологических процессов восстановления Технологический процесс восстановления детали представляет совокупность действий направленных на изменение ее состояния как ремонтной заготовки с целью восстановления эксплуатационных свойств. Единичный технологический процесс предназначен для восстановления конкретной детали независимо от типа производства Типовой технологический процесс разрабатывается...
9462. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ ПРАВКОЙ 9.43 MB
Основное назначение сварки восстановление целостности детали создание неразъемных соединений между частями одной детали или разными деталями. Виды сварки. Основные применяемые в ремонтном производстве виды сварки приведены в табл.1 Разновидности и технические возможности способов сварки.
12119. Получение из высокоуглеродистых шунгитовых пород многофункционального наноразмерного наполнителя полимерных композиционных материалов 17.69 KB
Краткое описание разработки Углеродные наполнители широко используются при создании многофункциональных композиционных материалов работающих в условиях агрессивных сред и высоких температур. Применение шунгитового наполнителя ШН позволяет расширить спектр используемых полимерных матриц и области применения углеродных наполнителей благодаря влиянию ШН на процесс переработки композиционных материалов. В основу получения НШН была положена задача разработки высокотехнологичного экологически безопасного и экономичного способа переработки...
9470. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ ЭЛЕКТРОЛИТИЧЕСКИМИ И ХИМИЧЕСКИМИ ПОКРЫТИЯМИ 3.78 MB
Электролитическое наращивание металлов основано на явлении электролиза – химического процесса, происходящего при прохождении постоянного тока через электролит, которым служит раствор солей металла, наращиваемого на изношенную деталь. Электроды 3 и 4 опущены в электролит и подключены к источнику питания...
9466. Восстановление деталей наплавкой твердыми сплавами 1.74 MB
При наплавке сильно изношенных деталей а также чугуна применяют комбинированный способ при котором сначала газопламенной или электродуговой наплавкой восстанавливают размеры детали после чего электродуговой наплавкой с применением угольного электрода наплавляют...
9457. ДЕФЕКТОСКОПИЯ ДЕТАЛЕЙ МАШИН 5.03 MB
Дефект - несоответствие изделия требованиям, определенным нормативной или технической документацией, что может быть причиной отказа. По причинам возникновения дефекты подразделяют на конструктивные, производственные и эксплуатационные.
9451. ОЧИСТКА МАШИН, УЗЛОВ И ДЕТАЛЕЙ 14.11 MB
Эксплуатационные загрязнения образуются на наружных и внутренних поверхностях машин узлов и деталей. Осадки образуются из продуктов сгорания и физикохимического трансформирования топлива и масла механических примесей продуктов износа деталей и воды. Опыт и исследования показывают что благодаря качественной очистке деталей в процессе их восстановления повышается ресурс отремонтированных машин и возрастает производительность труда.
14777. Выбор посадок и допусков для деталей машин и приборов 1.51 MB
Подшипники качения, работающие при самых разнообразных нагрузках и частотах вращения, должны обеспечивать точность и равномерность перемещений подвижных частей машин и приборов, а также обладать высокой долговечностью. Работоспособность подшипников качения в большой степени зависит от точности их изготовления и характера соединения с сопрягаемыми деталями.
11590. ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ И ПОРОШКОВ 374.49 KB
Приготовление смеси и формообразование заготовок. Классификация и состав пластмасс Пластмассы – материалы получаемые на основе природных или синтетических полимеров смол которые на определенной стадии производства или переработки обладают высокой пластичностью. Пространственные структуры получаются в результате химической связи отдельных цепей полимеров при полимеризации. Полимеры с линейной структурой хорошо растворяются а с пространственной нерастворимы при частом расположении связей полимер практически нерастворим и неплавок.


В продолжение темы:
Налоговая система

Многие люди мечтают о создании собственного бизнеса, но никак не могут это сделать. Нередко, в качестве основной помехи, которая их останавливает, они называют отсутствие...

Новые статьи
/
Популярные