Новейшие военные разработки России. Перспективные военные разработки России

Стратегии развития научно-производственных предприятий аэрокосмического комплекса. Инновационный путь Баранов Вячеслав Викторович

2.2. Состояние и перспективы развития ракетно-космической отрасли России

В условиях глобализации экономики особую значимость приобретает реализация приоритетов государственной инновационной политики Российской Федерации, в том числе в области ракетно-космической промышленности. Для России, так же как и для других промышленно развитых стран, освоение и использование космического пространства стало важным ресурсом национального развития, реального повышения качества жизни людей.

Применение космических систем для решения задач в таких сферах, как связь, теле– и радиовещание, дистанционное зондирование Земли из космоса, навигация и картография, вносит существенный вклад в формирование новой экономики, основанной на широком использовании информационных технологий. Расширение рынка космических технологий, использование результатов космической деятельности в экологическом мониторинге, борьбе со стихийными бедствиями и других областях человеческой деятельности призваны способствовать повышению качества жизни населения России.

Использование результатов космической деятельности позволяет повысить эффективность реализации приоритетных национальных проектов. Так, например, в рамках национального проекта «Образование» на базе космических средств могут быть созданы федеральные, региональные и межрегиональные системы дистанционного образования и интерактивного обучения, а также системы обеспечения безопасности школьного транспорта, зданий и сооружений образовательных учреждений. Результаты космической деятельности могут быть интегрированы в учебные курсы, дающие представление о возможностях современной науки и техники в решении актуальных задач социально-экономического развития общества.

В рамках реализации национального проекта «Доступное и комфортное жилье» могут быть использованы построенные на базе космической информации мониторинговые системы оценки состояния зданий и сооружений, обеспечения безопасности жизнедеятельности, системы энергоресурсосбережения, землепользования, градостроительства и учета недвижимости. Для национального проекта «Развитие агропромышленного комплекса» на базе информации дистанционного зондирования Земли из космоса, навигационных и других космических систем может быть создана целевая система мониторинга и управления сельским хозяйством.

С 2006 г. в России реализуется Федеральная космическая программа на 2006–2015 гг. В этой программе запланировано выполнение более двух десятков проектов научного назначения. Среди них проекты по созданию специализированных космических аппаратов, снабженных целевыми комплексами научной аппаратуры. Кроме того, программа предполагает дополнительную установку комплексов отечественной научной аппаратуры, во-первых, на российские космические аппараты, запуск которых обеспечивает решение важных народно-хозяйственных задач, а во-вторых, на зарубежные космические аппараты научного назначения.

Особенностью Федеральной космической программы России является то, что она предусматривает реализацию научных космических проектов с максимальным использованием унифицированных космических платформ. Эти платформы, являясь основными составляющими космических аппаратов, должны создавать все необходимые условия для функционирования полезной нагрузки, включая аппаратуру для научных исследований, дистанционного зондирования Земли, обеспечения радиосвязи и т. д.

Модульная технология создания космической платформы позволит минимизировать затраты и сроки адаптации возможностей платформы для применения в составе космических аппаратов разного типа. При этом важная роль отводится использованию унифицированной платформы для малоразмерных космических аппаратов. В настоящее время такая платформа уже разработана, причем за счет внебюджетных средств. В рамках проекта «Малые космические аппараты для фундаментальных космических исследований» планируется реализовать программу исследований солнечно-земных связей, наблюдений малых тел Солнечной системы, экспериментов в области астрофизики.

Федеральная космическая программа России на 2006–2015 гг. предусматривает обеспечение надежного функционирования и дальнейшего развития орбитальной группировки космических аппаратов социально-экономического назначения, включая аппараты связи и телевещания. Продолжается успешная эксплуатация космического аппарата дистанционного зондирования Земли «Ресурс-ДК1». Ввод в эксплуатацию этого аппарата положил начало созданию качественно новой орбитальной группировки космической системы мониторинга Земли.

В целях наращивания группировки дистанционного зондирования Земли специалисты ракетно-космической отрасли России выполнили НИОКР по созданию космических аппаратов «Канопус-В», «Метеор-М», «Электро-Л». Они дают возможность получать необходимые метеоданные, оперативно выявлять природные и техногенные катастрофы, своевременно предупреждать о лесных пожарах и т. д. В ходе успешного полета автоматической лаборатории «Фотон-М» совместно с европейскими партнерами проведены эксперименты в области космического материаловедения и биологии.

Частью программы пилотируемых полетов являются регулярные полеты кораблей «Союз ТМА» и транспортных кораблей «Прогресс» к Международной космической станции (МКС). Кроме того, специалисты отечественного ракетно-космического комплекса проводят работы по созданию новых модулей для российского сегмента МКС.

Залог устойчивого развития российского ракетно-космического комплекса – в современной наземной испытательной базе. В рамках Федеральной космической программы на 2006–2015 гг. ее ждет кардинальное обновление. Испытания элементов ракетоносителя «Ангара», включая огневые испытания двигателей для этого носителя, летные испытания носителя «Союз-2», а также создание и отработка новых разгонных блоков и транспортных модулей свидетельствуют о по-прежнему высоком инновационном потенциале российского ракетно-космического комплекса. Об этом говорят и результаты модернизации на космодроме Байконур стартовых и технических комплексов ракетоносителей «Протон», «Союз», «Зенит-М», «Циклон-2», технических комплексов космических аппаратов научного и социально-экономического назначения.

Развивается международное сотрудничество предприятий и организаций российского ракетно-космического комплекса. В рамках отечественной программы фундаментальных космических исследований российские ученые работают с аппаратурой «Конус-А», представляющей собой спектрометр гамма-всплесков, которая установлена на борту американского космического аппарата «Винд». Используются также магнитный спектрометр электронов, протонов и античастиц «Рим-Памела», находящийся в составе космического аппарата «Ресурс-ДК», а также приборы ОМЕГА и СПИКА-М, предназначенные для исследования атмосферы планет на борту европейских аппаратов «Марс-Экспресс», «Мимас» и «Мимас-2» и космических аппаратов США Mars Exploration Rovers. На борту европейской станции «Венера-Экспресс» успешно применяется планетарный Фурье-спектрометр.

Завершены работы по изготовлению отечественной астрофизической обсерватории «Спектр-Радиоастрон». Заканчивается разработка научно-исследовательского аппарата «Коронас-Фотон». Активно ведутся работы по созданию межпланетной станции «Фобос-Грунт».

Крупнейшим по-прежнему остается проект МКС. Россия активно участвует в строительстве и эксплуатации станции. Стратегически важным для российского ракетно-космического комплекса является проект «Союз» в Гвианском космическом центре (ГКЦ). Этот проект предусматривает создание наземной инфраструктуры на космодроме во Французской Гвиане и запуски с него адаптированной к условиям ГКЦ российской ракеты-носителя «Союз-СТ». Первый запуск «Союза-СТ» запланирован в будущем году. В среднесрочной перспективе портфель заказов составит 20 запусков. В реализации проекта активно участвуют предприятия российской ракетно-космической отрасли, в частности «ЦСКБ-Прогресс», и ряд других предприятий.

Успешно реализуется российско-французская программа «Урал» по разработке технологий, которые будут использованы в создании российско-европейских средств выведения. Также осуществляется совместный с Европейским космическим агентством (ЕКА) проект по созданию российской пилотируемой транспортной системы. Исследовательская программа, реализуемая в рамках этого проекта, рассчитана на 18 месяцев.

Одним из перспективных направлений сотрудничества с Европейским центром космических исследований и технологий (ESTEC) является разработка международных стандартов обработки и передачи по технологии Space Wire данных бортовых систем космических аппаратов.

Возлагаются надежды на международные программы «Морской старт», в которой кроме России участвуют Норвегия, США и Украина; «Наземный старт» с участием России и Украины, а также программу распространения с помощью глобальной навигационной спутниковой системы (ГЛОНАСС) гражданского сигнала для пользователей зарубежных стран.

Важной международной программой является развитие космодрома Байконур в Казахстане, фактически ставшего международным. Россия планирует использовать его совместно с Казахстаном, что обеспечит его высокую эффективность. Важны для российского ракетно-космического комплекса партнерские отношения и с Китайской национальной космической администрацией, а также со странами Карибского бассейна и Латинской Америки – Бразилией, Кубой, Венесуэлой, Аргентиной и другими государствами. Одной из новых граней международного сотрудничества в космосе стала попытка национальных космических агентств совместно решить глобальную проблему астероидно-кометной опасности.

Наращивание состава и возможностей орбитальной группировки предполагает полномасштабное развертывание системы ГЛОНАСС с широким внедрением наземной навигационной аппаратуры. Российская система ГЛОНАСС имеет ряд преимуществ перед аналогичными зарубежными системами. Так, российские навигационные космические аппараты лучше видны из приполярных зон, что весьма важно для успешного освоения месторождений и начала добычи углеводородов на шельфе северных морей.

Однако эффективность спутниковой навигации во многом зависит от готовности «земного» сегмента ракетно-космического комплекса к ее активному использованию. Поэтому необходима координация работ по поддержанию, развитию и использованию системы ГЛОНАСС. В настоящее время эти работы координирует Федеральное космическое агентство (Роскосмос).

Предприятия ракетно-космической отрасли разработали образцы навигационной аппаратуры потребителей системы, выпущены первые партии прибора, совмещающего прием сигналов одновременно навигационных систем ГЛОНАСС и GPS, созданы приборы наземной аппаратуры ГЛОНАСС, а также цифровые навигационные карты. Таким образом, сформированы все предпосылки для использования спутниковой навигации в решении важных народно-хозяйственных задач.

Предполагается, что к 2011 г. группировка навигационных спутников будет доведена до штатной численности 30 космических аппаратов. С 2010 г. планируется начать на орбите летные испытания космического аппарата ГЛОНАСС-К с увеличенным сроком работы в космосе до десяти лет. Если ввести в эксплуатацию все наземные средства, то точностные параметры ГЛОНАСС приблизятся к точности системы GPS.

В развитие Федеральной космической программы приняты Основы политики Российской Федерации в области космической деятельности на период до 2020 года и дальнейшую перспективу. Этот документ знаменует качественно новый этап развития отечественной ракетно-космической отрасли. В числе современных проектов – создание новой перспективной пилотируемой транспортной космической системы, средств для исследования и освоения Луны, Марса и других планет и объектов Вселенной.

Укрепление российской экономики в докризисный период и открывшиеся в связи с этим новые финансовые возможности позволяли отрасли стабильно развиваться. Прогноз динамики этого развития давал возможность России на равных с ведущими промышленно развитыми странами мира участвовать в международной космической кооперации. Сейчас же, в ситуации мирового финансового кризиса, отрасль остро нуждается в государственной поддержке и финансировании. Так, скорректированный по итогам первых послекризисных месяцев бюджет страны на 2009 г. не предполагает сокращения расходов на развитие ракетно-космической отрасли России. В 2009 г. на поддержку отечественной ракетно-космической отрасли будет выделено 82 млрд руб. Финансовую поддержку получат 16 ведущих предприятий отрасли.

Для устойчивого развития отечественной ракетно-космической отрасли необходим гарантированный доступ России в космическое пространство. В отрасли решается масштабная задача по развертыванию нового космодрома на востоке страны. Федеральное космическое агентство уже рассмотрело подготовленный для этого инвестиционный проект, в частности результаты системного проектирования космодрома признаны положительными. На основе утвержденного проекта разрабатывается рабочая документация строительства космодрома. Реализация этого проекта требует не только строительства нового космодрома, который определит перспективный облик российской космонавтики, но и решения комплекса взаимосвязанных научно-технических и экономических задач. Приоритетной среди них является выбор оптимального парка средств выведения, а также определение технических характеристик нового пилотируемого корабля.

Важным направлением деятельности предприятий и организаций ракетно-космической отрасли является опережающее наращивание состава, качества и возможностей российской орбитальной группировки. Для этого разрабатывается прогноз состава и возможностей перспективной орбитальной группировки до 2020 г. В основу прогноза закладывается использование совершенно новых или глубоко модернизированных космических аппаратов с характеристиками на уровне лучших зарубежных аналогов.

Реализация этого прогноза позволит еще больше расширить присутствие России на мировом рынке космических аппаратов и услуг. Это касается не только стартовых услуг по выведению зарубежных космических аппаратов и грузов, но и значительного увеличения доли России на мировом рынке высокотехнологичных разработок и услуг, включая связь, навигацию, гидрометеомониторинг, дистанционное зондирование Земли и т. д.

Для решения этих задач необходима разработка и реализация комплекса взаимосвязанных мероприятий по наращиванию кадрового потенциала и глубокой технологической модернизации ракетно-космической промышленности. Обострение конкуренции на мировом рынке космических услуг диктует необходимость кардинального обновления станочного парка предприятий отрасли и разработки новых технологий производства ракетно-космической техники.

Данный текст является ознакомительным фрагментом. Из книги Деньги. Кредит. Банки [Ответы на экзаменационные билеты] автора Варламова Татьяна Петровна

20. Перспективы развития безналичных расчетов Совершенствование платежной системы в Российской Федерации решается путем создания и развития электронной системы межбанковских расчетов (ЭЛСИМЕР), позволяющей учитывать и активно использовать возможности современной

Из книги Деньги. Кредит. Банки [Ответы на экзаменационные билеты] автора Варламова Татьяна Петровна

31. Особенности денежной системы России: прошлое, настоящее, перспективы развития Денежная система России в процессе перехода к рыночной экономике притерпела серьезные изменения и в настоящее время функционирует в соответствии с Федеральным законом «О Центральном

Из книги Основы логистики автора Левкин Григорий Григорьевич

20.1. Состояние и перспективы развития транспортного рынка в Российской Федерации В условиях современного транспортного рынка в целях рациональной организации перевозок грузовладельцы встречаются с широким выбором перевозчиков с помощью различных видов транспорта.

Из книги Фотография как бизнес: с чего начать, как преуспеть автора Песочинский Дмитрий Михайлович

Глава 23 Перспективы дальнейшего развития Не тужи, дорогой, и не ахай. Жизнь держи, как коня за узду. Приписывается Есенину Нет человека, который не хотел бы заглянуть в будущее, и размышления о перспективах вполне свойственны любому. С уверенностью можно сказать лишь одно

Из книги Применение технологий электронного банкинга: риск-ориентированный подход автора Лямин Л. В.

Перспективы развития электронного банкинга Каким бы подробным ни было описание, не может быть никакой уверенности, что в уме слушателя сложится представление, соответствующее истине. Ч.У. Ледбитер. «Астральный план» Перспективы дальнейшего развития электронного

Из книги Мировая экономика. Шпаргалка автора Энговатова Ольга Анатольевна

1. Предмет и задачи курса Предметом курса «Мировая экономика» является метаэкономика, иными словами, поведение мировой экономики в целом. Используются следующие методические подходы: 1) субъективистский, (потребность и полезность). При таком подходе экономическая теория

Из книги Механизмы и методы регулирования в условиях преодоления кризиса автора Автор неизвестен

4.5. Африка как арена столкновения экономических интересов: опыт, современное состояние и перспективы в посткризисном мире Африканский континент, начиная со средних веков, становится местом столкновения экономических интересов мировых держав.Африка издавна притягивала

автора Черников Геннадий Петрович

Проблемы машиностроения. Достижения в авиационной и ракетно-космической промышленности Машиностроительный комплекс играет важную роль в российской экономике. На долю машиностроения приходится около 20 % всей выпускаемой промышленной продукции и примерно 25 % основных

Из книги Европа на рубеже XX-XXI веков: Проблемы экономики автора Черников Геннадий Петрович

Перспективы развития сотрудничества России и Евросоюза Экономическое сотрудничество между Россией и странами Евросоюза развивается весьма интенсивно. ЕС превратился сегодня в главного экономического партнера нашей страны. На его долю приходится примерно половина

Из книги Логистика автора Савенкова Татьяна Ивановна

3. 7. Перспективы развития производственно-логистической системы В процессе развития научно-технического прогресса, формирования рынка покупателя, изменения приоритетов в мотивациях потребителей и обострения всех форм конкуренции возрастает динамичность рыночной

автора

2.4. Состояние и перспективы развития вертолетостроения в России В вертолетостроительной отрасли России существует три уровня управления. Первый уровень – это компания «Оборонпром», которая, в свою очередь, подчиняется компании «Российские технологии». В рамках

Из книги Стратегии развития научно-производственных предприятий аэрокосмического комплекса. Инновационный путь автора Баранов Вячеслав Викторович

2.5. Состояние и перспективы развития авиационного двигателестроения России В России насчитывается около 40 предприятий двигателестроения. Однако отечественные авиационные двигатели уступают лучшим мировым образцам по ресурсу, расходу топлива, уровню шумности и

автора Абрамс Ронда

Состояние «здоровья» и тенденции развития отрасли Ваш бизнес существует отнюдь не в вакууме; как правило, компания работает в тех же самых условиях, которые оказывают влияние на отрасль в целом. Если по всей стране отмечается снижение потребительских расходов, весьма

Из книги Бизнес-план на 100%. Стратегия и тактика эффективного бизнеса автора Абрамс Ронда

Общая характеристика деятельности «Роскосмоса»

В настоящее время государственная корпорация по космической деятельности «Роскосмос» объединяет более 90 организаций, 80% которых – это акционерные общества. В них работает около 250 тыс. человек.

В 2016 году отмечался год 55-летия полёта Юрия Гагарина, Год Гагарина. Этот год стал продолжением системной реформы ракетно-космической отрасли России, предприятий и организаций госкорпорации, которая стартовала осенью 2014 года. Основные направления изменений, проводимых в космической отрасли, – это повышение качества выпускаемой продукции, финансовое оздоровление предприятий и обновление производства.

В 2016 году Правительство Российской Федерации утвердило Федеральную космическую программу (далее – ФКП) на 2016–2025 годы, что определило пути и направления космической деятельности России на ближайшее десятилетие. Сохранены все значимые программы – разработка и производство новых типов ракет-носителей и пилотируемого транспортного корабля «Федерация», международное сотрудничество, в том числе по МКС, разработка, производство и запуски космических аппаратов для прикладных и фундаментальных научных исследований.

В 2016 году продолжена работа по обеспечению развития космической деятельности и ракетно-космической отрасли России. Решались следующие задачи:

формирование и поддержание необходимого состава орбитальной группировки космических аппаратов;

внедрение отечественных спутниковых навигационных технологий и услуг с использованием глобальной навигационной спутниковой системы ГЛОНАСС;

совершенствование системы обеспечения данными дистанционного зондирования Земли (далее – ДЗЗ) из космоса с использованием российских космических аппаратов (далее – КА) ДЗЗ высокого пространственного разрешения;

продолжение реализации программ научно-прикладных исследований и экспериментов на Международной космической станции;

создание научно-технического и технологического заделов по перспективным образцам ракетно-космической техники;

модернизация и поддержание космодромов Плесецк и Байконур, строительство космодрома Восточный.

Реализуется комплекс организационных, научно-технических и производственно-технологических мероприятий, предусматривающих мероприятия по капитальным вложениям, включая инвестиционные проекты по модернизации производственных мощностей.

Только за последние два года введено в эксплуатацию более 40 объектов реконструкции и технического перевооружения, включающие в себя полностью обновленный парк технического оборудования. В среднесрочный период запланировано перевооружение еще более 160 объектов в рамках программы инновационного развития корпорации.

Действующие программы инновационного развития ведущих предприятий – производителей космической техники (ПАО «Ракетно-космическая корпорация «Энергия», ФГУП «ГКНПЦ им.М.В.Хруничева», АО «РКЦ «Прогресс», АО «НПО Энергомаш им.академика В.П.Глушко», АО «Информационные спутниковые системы» им.академика М.Ф.Решетнева», АО «Российские космические системы» и другие) направлены, в том числе и на кардинальное обновление технического парка производственных фондов.

Сформирован кадровый резерв ракетно-космической отрасли; разработаны критерии отбора и компетенций сотрудников, претендующих на руководящие должности. Всего в 2016 году было подано 1320 заявок от руководителей разного уровня организаций отрасли, и комиссия в итоге отберёт 200 человек, которые пройдут обучение в созданной и успешно действующей Корпоративной академии госкорпорации «Роскосмос». В 2016 году проведена первая отраслевая спартакиаду и первый корпоративный чемпионат «Молодые профессионалы “Роскосмоса”» по стандартам WorldSkills. Также разрабатываются, формируются и вводятся в действие новые стандарты и методики работы с сотрудниками, где один из важных моментов – мотивация к качественному труду.

Чистая прибыль предприятий отрасли в 2016 году составила 3,2 млрд рублей, что на 56% выше показателя 2015 года.

В 2016 году Роскосмос совместно с Московским планетарием проводила акцию «Вернём астрономию в школы». С Минобрнауки России достигнута договорённость о возвращении уроков астрономии в школы.

Ключевые показатели

Основное событие 2016 года – первый пуск с первого гражданского космодрома России Восточный 28 апреля 2016 года. Ракета-носитель (далее – РН) «Союз 2.1а» вывела на заданные орбиты два космических аппарата научного назначения и ДЗЗ – «Ломоносов» и «Аист-2Д».

В настоящее время госкорпорация «Роскосмос» приступает ко второй очереди строительства космодрома, прежде всего к созданию стартового комплекса для пуска новых, перспективных ракет-носителей «Ангара».

В 2016 году было осуществлено 19 пусков в интересах государственных и коммерческих заказчиков. По программе МКС госкорпорация «Роскосмос» выполнила 7 пусков с космодрома Байконур; также было осуществлено 5 коммерческих стартов: 2 – с космодрома Байконур, 1 – с космодрома Плесецк и 2 – из Гвианского космического центра.

Продолжает пользоваться спросом уникальная продукция флагманского двигателестроительного предприятия госкорпорации «Роскосмос» АО «НПО “Энергомаш”». Так, в октябре 2016 года состоялся успешный запуск американской ракеты-носителя Antares с российскими двигателями РД-181 производства этого предприятия.

Орбитальная группировка космических аппаратов социально-экономического, научного и двойного назначения по состоянию на конец 2016 года включала 84 КА, в том числе 27 КА – системы ГЛОНАСС и 8 КА ДЗЗ природоресурсного и гидрометеорологического назначения. Основные характеристики системы ГЛОНАСС (точность и доступность) стабильно поддерживались в течение всего года на конкурентоспособном уровне.

Развитие системы дистанционного зондирования Земли

В 2016 году сформирована космическая система дистанционного зондирования земли (ДЗЗ) в составе из трёх КА «Ресурс-П», с учётом этого было обеспечено предоставление данных ДЗЗ всем федеральным органам исполнительной власти и органам исполнительной власти субъектов Федерации. Начаты работы по коммерческому использованию данных ДЗЗ.

В рамках развития космической инфраструктуры развёрнут первый в России арктический центр приёма данных ДЗЗ в Мурманске. Начаты работы по развёртыванию аналогичного центра в Антарктиде на станции «Прогресс».

Разработка перспективных ракет-носителей

Для успешного продвижения России на международном космическом рынке пусковых услуг нашей стране необходимы перспективные ракеты-носители. Предприятия и конструкторские бюро госкорпорации «Роскосмос» разрабатывают проекты ракетного комплекса тяжёлого класса повышенной грузоподъёмности на базе РН «Ангара А5» и сверхтяжёлого класса по лунной программе (проработка его эскизного проекта началась в 2017 году). С казахстанскими партнёрами достигнута договорённость по созданию на космодроме Байконур комплекса «Байтерек» с использованием новой перспективной российской ракеты-носителя, разработка которой планируется в 2018 году.

Госкорпорация «Роскосмос» продолжает внедрять на всех предприятиях и в организациях ракетно-космической отрасли России системы контроля и повышения качества выпускаемой космической техники. Отрасль переходит на цифровое проектирование космической техники. Основная цель по качеству и надёжности – снижение уровня аварийности средств выведения к 2020 году не менее чем в 1,5 раза и увеличение сроков активного существования космических аппаратов на 25–30%.

Для повышения эффективности производства и роста конкурентоспособности производимой ракетно-космической техники госкорпорация «Роскосмос» разработала и утвердила стандарты производственной системы. Для начала внедрения стандартов новой производственной системы выбраны три флагманских предприятия госкорпорации: ФГУП «ГКНПЦ им. М.В.Хруничева» (далее – Центр Хруничева), ПАО «РКК “Энергия”» и АО «НПО “Энергомаш”».

Международные проекты «Роскосмоса»

В рамках ранее заключённых межправительственных соглашений по мирному исследованию и использованию космического пространства госкорпорация «Роскосмос» в 2016 году сотрудничала со следующими странами: Германия, Франция, Италия, Испания, Швеция, Бельгия, Болгария, Венгрия, США, Бразилия, Аргентина, Куба, Никарагуа, Чили, Китай, Индия, Республика Корея, Индонезия, Вьетнам, Австралия, ЮАР, – а также со странами СНГ: Казахстаном, Белоруссией и Арменией.

В 2016 году госкорпорация «Роскосмос» осуществляла функцию лидирующего космического агентства в рамках Международной хартии по космосу и крупным катастрофам.

Также в 2016 году в рамках международного сотрудничества госкорпорация «Роскосмос» решала задачи организации, обеспечения взаимодействия и развития международного сотрудничества с зарубежными космическими агентствами, в том числе Европейским космическим агентством (далее – ESA) и Национальным агентством по аэронавтике и исследованию космического пространства (далее – NASA), национальными координационными органами иностранных государств и международными организациями в области исследования и использования космического пространства.

В 2016 году с казахстанской стороной подписана Концепция дальнейшего сотрудничества на комплексе Байконур, совместная программа по развитию инфраструктуры туризма на Байконуре, «дорожная карта» по реализации проекта «Байтерек» на 2016–2025 годы, другие межправительственные и межведомственные соглашения.

В 2016 году госкорпорация «Роскосмос» провела подготовку к заключению межправительственных соглашений с Мексикой, Перу, Венесуэлой, Саудовской Аравией, Израилем, Малайзией, Монголией, Эквадором, Анголой и Алжиром.

В рамках международного сотрудничества по программе МКС госкорпорацией «Роскосмос» совместно с Германским аэрокосмическим центром (DLR) подписано дополнение к рамочному соглашению в части использования МКС для исследовательской и экспериментальной деятельности. Также продолжаются совместные космические эксперименты госкорпорации «Роскосмос», ESA, NASA и Японского агентства аэрокосмических исследований (далее – JAXA). Так, в рамках совместного с JAXA космического эксперимента «Кристаллизатор» получены результаты, позволяющие российским учёным проводить работы по созданию медицинского препарата для лечения онкологических заболеваний.

В 2016 году успешно завершился первый российско-американский годовой полёт. На МКС работали космонавт госкорпорации «Роскосмос» Михаил Корниенко и астронавт NASA Скотт Келли.

Один из резонансных международных научных проектов – проект «ЭкзоМарс», в котором Россия работает вместе с коллегами из Европейского космического агентства. В марте 2016 года с космодрома Байконур РН «Протон» осуществила успешный старт российско-европейской миссии «ЭкзоМарс-2016». Аппарат успешно достиг орбиты Марса и начал свою работу. На борту аппарата из четырёх приборов – два российских. Следующий этап миссии планируется к реализации в 2020 году.

Сотрудники ФГУП «ЦНИИмаш», научно-исследовательского института, входящего в госкорпорацию «Роскосмос», разработали актуальные сценарии полётов к Луне, сочетающие использование автоматических и пилотируемых космических аппаратов, обоснованы проектные облики и технические требования к перспективным пилотируемым космическим комплексам.

Госкорпорация «Роскосмос» активно развивает сотрудничество с зарубежными странами в области спутниковой навигации. Федеральная целевая программа «Поддержание, развитие и использование системы ГЛОНАСС на 2012–2020 годы» предусматривает создание сети мониторинга, включающей в себя станции функциональных дополнений системы ГЛОНАСС для глобального высокоточного определения навигационной информации в реальном времени для гражданских потребителей и для контроля и подтверждения характеристик системы ГЛОНАСС. Так, в 2016 году была размещена квантово-оптическая станция, предназначенная для траекторных измерений движения спутников ГЛОНАСС, начаты плановые испытания параметров станции. Размещённая в ЮАР система «Сажень-ТМ-БИС» стала вторым по счёту радио-лазерным комплексом зарубежного сегмента сети станций госкорпорации «Роскосмос», создаваемой в интересах системы ГЛОНАСС (первый комплекс такого типа был установлен и запущен в эксплуатацию 14 июля 2014 года в г. Бразилиа, Бразилия). Завершены подготовительные мероприятия по вводу в эксплуатацию станции сбора измерений системы ГЛОНАСС в Никарагуа, введение которой в строй запланировано в апреле 2017 года. Достигнута договорённость о размещении на территории Республики Армения унифицированной станции сбора измерений глобальных навигационных спутниковых систем.

В 2016 году госкорпорация «Роскосмос» начала разработку пятистороннего международного проекта по совместному использованию в интересах стран БРИКС орбитальных группировок спутников дистанционного зондирования Земли и соответствующей наземной инфраструктуры, а также по созданию механизма обмена данными ДЗЗ в сферах изучения изменения климата, защиты от чрезвычайных ситуаций и охраны окружающей среды. В настоящее время соответствующий проект пятистороннего соглашения проходит согласование с зарубежными партнёрами.

Многоразовый ускоритель первой ступени «Байкал» в составе ракеты-носителя / Фото: www.gazeta.ru

"Роскосмос" готов приступить к созданию летного образца возвращаемой первой ступени ракеты- носителя. Для этого в Центре имени Хруничева собрана команда специалистов, разрабатывавших систему "Энергия - Буран", пишут "Известия" со ссылкой на Александра Медведева, генерального конструктора "Роскосмоса" по ракетным комплексам.



Александр Медведев / Фото: so-l.ru


"Приказом гендиректора Центра имени Хруничева на предприятии восстановлен департамент по многоразовым средствам выведения, - сказал А. Медведев. - Это произошло буквально месяц назад. Работать туда мы пригласили людей, которые создавали в свое время "Буран". Департамент возглавил Павел Анатольевич Лехов, один из проектировщиков системы "Энергия - Буран".

Как отмечает издание, российских инженеров не вдохновил опыт Илона Маска, основателя SpaceX, который сажает первые ступени ракеты Falcon 9 на баржу в Атлантическом океане. "Хруничев" проектирует "крылатую" первую ступень, которая сможет возвращаться на космодром, как самолет, и садиться на взлетно-посадочную полосу.

"Убежден, что для российских условий возвращаемая первая ступень с выходящими крыльями - это оптимальный вариант, - отметил А. Медведев. - Схема, по которой сажает первую ступень SpaceX, нам не подходит, поскольку с наших космодромов ракеты летят не над морем и у нас нет возможности подогнать в нужное место баржу. Даже если бы такая возможность была, не факт, что это оптимальный путь: в море почти всегда мешает боковой ветер и качка".

"Энергия - Буран" - советская многоразовая транспортная космическая система. Свой первый и единственный космический полет корабль "Буран" совершил в беспилотном режиме 15 ноября 1988 года. Программа была начата в 1976 году, в 1992 году было принято решение о ее прекращении, сообщает ТАСС .

Техническая справка

"Байкал" спроектирован в ОАО "НПО "Молния"" по заказу ГКНПЦ им. М.В.Хруничева. В беседе с корреспондентом Агентства военных новостей начальник сектора международных программ и проектов ГКНПЦ Олег Алексеевич Соколов сообщил, что работы по аналогичным ускорителям ведутся в США, европейских странах и, по некоторым данным, Китае, но в металле полноразмерный макет создан лишь в России.


Российский многоразовый ускоритель (МРУ) "Байкал" / Фото: www.objectiv-x.ru

НК подробно рассказывали о проекте МРУ еще два года назад, когда на 43-м салоне Ле Бурже выставлялась небольшая модель "Байкала". С тех пор в проекте произошел ряд изменений; появились также новые данные как о самом ускорителе, так и о семействе всеазимутальных РН "Ангара-В" на его основе.

По мнению разработчиков, концепция двухступенчатого средства выведения с многоразовой "атмосферной" первой ступенью дает возможность обеспечить гибкость в использовании различных верхних ступеней, среди которых могут и должны быть многоразовые космические корабли.


Фото: www.objectiv-x.ru

Подобная система будет иметь значительно меньшие габариты и массу, чем одноступенчатая многоразовая система, обладающая аналогичными показателями масс выводимой на орбиту и доставляемой на Землю полезных нагрузок (ПН), и, следовательно, более высокие технические показатели. Что касается общей стоимости разработки и эксплуатации, то отработка системы "по частям" может оказаться дешевле, чем доведение до рабочего состояния более крупного и сложного одноступенчатого носителя. С точки зрения проектантов, операция разделения двухступенчатой системы является хорошо отработанной в мировой практике процедурой и не должна потребовать значительных затрат.

Применение многоразовой "атмосферной" ступени для выведения одноразовых ПН может осуществляться не только в рамках концепции двухступенчатого носителя. Нагрузкой для многоразовой первой ступени может быть и сочетание конечной (целевой) ПН с одноразовыми верхними ступенями и разгонными блоками, которые должны быть в составе РН любого класса. Возможно сочетание многоразовых модулей с одноразовыми ступенями, начинающими работу с поверхности Земли (принцип модульности).

Такая концепция многоразовых ступеней-модулей заложена в основу перспективных разработок, проводимых ГКНПЦ совместно с НПО "Молния" в рамках проекта "Байкал". Использование ступеней-модулей, имеющих ракетный двигатель для старта и разгона и воздушно-реактивный двигатель (ВРД), поворотное крыло, аэродинамические органы управления и шасси для возвращения и посадки, предусматривается как в виде первых ступеней легких РН, так и в виде связок или навесных ускорителей в ракетах среднего и тяжелого классов.


Три проекции МРУ "Байкал" / Изображение: www.buran.ru

Особенность "Байкала": не только посадка МРУ на землю, но и возвращение его в точку старта с помощью средств обратного полета, включающих ВРД и систему управления, отработанную на орбитальном корабле "Буран". По расчетам разработчиков, применение "Байкала" на РН семейства "Ангара" позволит в 2-3 раза сократить расходы на вывод ПН на орбиту.

Изделие, демонстрировавшееся в Париже, оснащалось макетами ракетного двигателя РД-191М и турбореактивного двухконтурного двигателя с форсажной камерой (ТРДДФ) РД-33, применяемого на истребителе МиГ-29.

РД-191М тягой у земли 196 т, удельным импульсом у земли 309 сек и в вакууме 337.5 сек, разработан в НПО "Энергомаш" им. В.П.Глушко. ЖРД массой 2.2 т работает на керосине и жидком кислороде и крепится в хвостовой части МРУ в карданном подвесе с углом качания плюс/минус 8º для управления по тангажу и рысканью. ТРДДФ РД-33 разработан санкт-петербургским НПО им. В.Я.Климова, имеет тягу 8.3 тс и массу 1050 кг. Его габариты: длина 4.3 м, ширина 2.0 м, высота 1.1 м. При работе на крейсерском режиме (высота 11 км и скорость полета 0.8 М) удельный расход топлива (керосина) составляет 0.961 кг/тс.час. РД-33 оборудован системами защиты и раннего обнаружения неисправностей.

Кроме того, в проекте рассматривается возможность установки на МРУ двигателя РД-35, разрабатываемого для Як-130.

Шасси ускорителя взяты с самолетов Як-42 и Су-17. Как рассказал Олег Соколов, МРУ "Байкал" рассчитан на 25 пусков, но в перспективе их число планируется довести до двухсот.

Макет, показанный в Ле Бурже, в дальнейшем будет использован для статических прочностных и других наземных испытаний. По словам одних представителей ГКНПЦ, в настоящее время в производстве находятся несколько "Байкалов", которые предназначены для летных испытаний. Однако по неофициальным заявлениям других, до изготовления летных изделий еще далеко, а представленный на выставке макет делался на "скорую руку" и далек по внешнему виду и конструкции от реального "Байкала", который будет запускаться с космодрома Плесецк.

Летные испытания МРУ будут проводиться в несколько этапов.

На первом - "Байкал" устанавливается на фюзеляже специализированного самолета-носителя ВМ-Т "Атлант". После взлета и набора высоты МРУ отделяется от носителя и в автономном режиме совершает посадку.

На втором этапе "Байкал" без второй ступени запускается со стартового комплекса РН "Ангара".

Третий этап ЛКИ предусматривает пуски "Ангары А1-В" в штатной конфигурации: МРУ плюс вторая ступень "Бриз-КМ".


Ракета-носитель "Ангара А1-В" с использованием МРУ "Байкал" / Изображение: www.buran.ru

Характеристики многоразового ускорителя "Байкал"

Характернистики РН "Ангара А1-В" с использованием МРУ "Байкал"


По самым оптимистичным заявлениям представителей Центра Хруничева, первый пуск "Ангары А1-В" с ускорителем "Байкал" планируется осуществить через 2-3 года. Тот же срок назывался и два года назад, на предыдущем салоне в Ле Бурже. Следовательно, темп работ пока невысок, или разработчики столкнулись с серьезными техническими и технологическими трудностями.

Олег Соколов особо подчеркнул, что унифицированный ускоритель "Байкал" может использоваться на РН различного класса, в т.ч. американских шаттлах, французской Ariane 5 и других носителях. На РН "Ангара" легкого класса "Байкал" будет первой ступенью. Однако рынок легких носителей в настоящее время не настолько широк, чтобы окупить создание столь дорогой многоразовой ступени.

В первой половине 90-х годов в мире говорилось о блестящих перспективах ракет легкого класса в связи с прогнозировавшимся резким ростом числа малых КА, рассчитанных на работу на низких орбитах, и развертыванием целой серии низко- и среднеорбитальных систем глобальной спутниковой связи.

Однако число проектов малых КА, финансируемых и находящихся в стадии реализации, за последние годы сократилось. Системы связи на базе "нестационарных" группировок небольших КА до сих пор не подтвердили свою экономическую окупаемость, а потому не получили широкого распространения. В связи с этим множества пусков РН легкого класса в действительности не потребовалось; закладываемый в "Байкал" ресурс из 200 полетов в варианте легкой ракеты может просто не выработаться к моменту морального "старения" носителя и окончания ресурса долговечности систем и агрегатов. Окупиться создание МРУ может, пожалуй, только при его использовании в более востребованных на рынке носителях среднего и, прежде всего, тяжелого классов.

Компоновочные схемы ракет / Изображение: www.buran.ru

Всеазимутальные РН "Ангара-В" среднего и тяжелого классов получаются путем замены боковых универсальных ракетных модулей (УРМ) ускорителями "Байкал". Так, на "Ангаре-А3" среднего класса планируется устанавливать два МРУ (вариант "Ангара А3-В"), а из РН тяжелого класса "Ангара-А5" заменой четырех боковых УРМ на четыре МРУ получается "Ангара А5-В". Прорабатывается и вариант использования ускорителей на тяжелой "Ангаре-А4" с кислородно-водородной второй ступенью ("Ангара А4-В"). Однако использование 2-4 МРУ на одной РН может создать целый ряд проблем. Компоновка вариантов "Ангара А5-В" и "Ангара А4-В" уже потребовала сделать складными горизонтальные хвостовые стабилизаторы у двух из четырех ускорителей. Кроме того, могут возникнуть серьезные сложности при одновременном возвращении на аэродром сразу четырех МРУ, отделившихся от РН.

Центр Хруничева и НПО "Молния" также исследуют вариант запуска РН "Ангара" с МРУ "Байкал" с самолета-носителя Ан-124 "Руслан", что, как упоминалось выше, тоже является развитием концепции многоразовых "атмосферных" ступеней.

Кроме того, в рамках перспективных исследований ГКНПЦ изучаются полностью многоразовые системы, состоящие из "Байкала" и многоразовой второй ступени. Однако их реализация является делом более отдаленного будущего и не стоит сейчас на первом плане работы Центра.

По мнению сотрудников ГКНПЦ, последовательное развитие "атмосферных" ступеней неизбежно должно привести к созданию гиперзвуковых самолетов-носителей "космических" ступеней. Таким самолетам до выхода на уровень одноступенчатого аэрокосмического многоразового средства выведения останется только пройти этап оснащения высокоэффективной комбинированной двигательной установкой. Для их создания, очевидно, потребуются более совершенные технологии, чем имеющиеся сейчас в распоряжении не только Центра Хруничева, но и вообще в мире.


Разделение стуреней РН "Ангара3-В" / Изображение: www.buran.ru

Характеристики семейства РН "Ангара-В" с использованием МРУ "Байкал"

РН А1-В А3-В А5-В А4-В
Стартовая масса, т 168.9
446
709
700
Число МРУ на первой ступени 1
2
4
4
Компоненты топлива:
первая ступень О2+РГ-1 О2+РГ-1 О2+РГ-1 О2+РГ-1
вторая ступень АТ+НДМГ
О2+РГ-1 О2+РГ-1 О2+H2
Масса полезной нагрузки при запуске с космодрома Плесецк:
на низкую орбиту, т
1.9
9.3
18.4
22.0
на геопереходную орбиту, т
-
1.0 4
4.4
5.66
на геостационарную орбиту, т
- - 2.5 3.2

По материалам проспектов ГКНПЦ им. М.В.Хруничева, НПО "Молния", сообщениям агентства Интерфакс и Агентства военных новостей.

Космическая промышленность России считается одной из мощнейших в мире. Государство является лидером в запусках на орбиту и пилотируемых полетах, сохраняя с Америкой паритет в области навигации. Примерно 40% стартов, осуществленных в двадцать первом веке, произведены с отечественных космодромов и казахстанского «Байконура», арендованного РФ до 2050 года.

Ракетно-космическая промышленность РФ

В космической промышленности страны занято около сотни предприятий, на которых работает четверть миллиона человек. Большинство из них – «наследники» советских конструкторских бюро и заводов. Самым крупным подрядчиком пилотируемых полетов является корпорация «Энергия» им. Королёва. Здесь разрабатывают аппараты «Прогресс» и «Союз-ТМА», а также оборудование для международной программы по созданию МКС.

«ГКНПЦ» им. Хруничева и «ЦСКБ-Прогресс» специализируются на производстве ракет-носителей и разгонных блоков. Их продукция востребована не только отечественными, а и ведущими зарубежными центрами. В «Информационных спутниковых системах» разрабатывают спутники. В секторе межпланетных зондов лидером ракетно-космической промышленности считается НПО им. Лавочкина.

Космическая промышленность России в 2016-м

Прошлый год ознаменовался для отрасли потерей лидерства по количеству стартов. С американских и китайских площадок был произведен на один запуск больше (по 19). Увеличилось отставание от США и ЕС в ряде направлений, например, исследовании дальнего космоса, разработке устойчивой к радиации элементной базы и дистанционном зондировании планеты. Одной из главных тем 2016-го стало строительство космодрома «Восточный», сопровождавшееся многочисленными финансовыми скандалами.

В 2014 году была разработана «ФКП на 2016-2025 гг.» с бюджетом в 2,85 трлн рублей. Помимо стандартной поддержки отрасли, программа включает разработку сверхтяжелого ракетоносителя для пилотируемого полета на Луну и ряд других интересных проектов. Однако уже очень скоро стало понятно, что на обещанный объем финансирования космическая промышленность России в ближайшее время может не рассчитывать.

В 2015 году был подготовлен новый вариант, предусматривающий сокращение бюджета до двух триллионов рублей, но экономическое министерство соглашалось выделить только половину этой суммы. В результате жестких переговоров стороны сошлись на компромиссе в виде 1,406 трлн рублей. Если финансовая ситуация в стране улучшится, после 2020-го добавят еще 115 млрд.

Авторитетное мнение

Скандально известный вице-президент Д.Рогозин , являющийся по совместительству председателем наблюдательного совета «Роскосмоса», в конце мая минувшего года высказал мнение, что даже повышение производительности в полтора раза не позволит ракетно-космической промышленности РФ догнать США. По его словам, отставание страны в этой сфере является девятикратным. Главной причиной чиновник называет бюрократию, почему-то «забывая» при этом о коррупции.

Забавно, что еще пару лет назад Рогозин сам обрушился бы с жесточайшей критикой на любого, кто посмел бы озвучить подобную «ересь». В начале введения западных санкций политик отзывался об американцах исключительно в язвительном тоне. Знаменитые «батуты на Луну», рекомендованные США, давно стали интернет-мемом. С чем связано нынешнее самоуничижение, понять сложно.

Перспективы

Несмотря на пессимизм Рогозина, снижение финансирования образовательных и научных программ, а также отсутствие полностью независимого доступа на орбиту космическая промышленность РФ продолжает оставаться одним из мировых лидеров. Перед разработчиками стоит много интересных и важных задач. Перечислим лишь некоторые проекты, которые должны быть реализованы уже в ближайшие годы.

В первую очередь, это создание системы, способной обслуживать отдельные объекты на орбитах, разработка недорогих малогабаритных аппаратов для исследования лучей, возобновление комплексного анализа Луны с помощью автоматики, развитие и усовершенствование навигационной системы «Глонасс» . Кроме того, продолжатся работы по модернизации отечественных космодромов.

Одним из приоритетов космической промышленности является введение в эксплуатацию обсерватории инфракрасного и миллиметрового диапазона «Миллиметрон», оснащенной мощным криогенным телескопом. Запустить объект планируется после 2019 года. Отечественные специалисты продолжают активно участвовать в программе МКС и международных проектах по исследованию Юпитера, Марса и Луны. Пилотируемые полеты на другие планеты в ближайшие несколько десятилетий не планируются. Развитие частной космонавтики в РФ в нынешних реалиях выглядит малоперспективным.

Секция «Финансы и кредит»

Таким образом, инвестиции в проекты по прикладным направлениям космической деятельности стали к настоящему времени достаточно «стандартными» капиталовложениями, сравнимыми, например, с инвестициями в проекты в области мобильной связи или развития информационных технологий.

Для сбалансированных затрат в освоении космического пространства необходимо деление на: финансирование коммерциализуемых проектов - в данную сферу деятельности необходимо привлекать капитал частного сектора; финансирование долгосрочных программ, связанных, например, с освоением космического пространства с целью научных исследований, что должно осуществляться за счет консолидации средств государств - участников этих, почти неизбежно международных проектов.

Международное сотрудничество в сфере освоения космического пространства является особо важным, поскольку широкий обмен взаимодополняющими научными данными обеспечивает качественный рост эффективности космических исследовании в интересах фундаментальной науки, при этом исключается эффект дублирования затрат на аналогичные исследования в разных странах .

Проводя анализ современного положения космической отрасли в России можно сделать вывод, что государственное финансирование космической отрасли в нашей стране за последние пять лет выросло втрое, и его объемы продолжают расти. Однако российские частные компании на этом рынке практически отсутствуют, в то время как во всем мире наблюдается тенденция к увеличению участия частного сектора в исследовании космоса. Помимо этого, на международном рынке высоких технологий сегодня действует принцип разделения труда, и России следует более активно формировать альянсы с ведущими мировыми производителями в этой сфере.

1. Макаров Ю., Пайсон Д. Экономист // Модели взаимодействия при финансировании космической деятельности. 2010. № 6. С. 33-41.

2. Поповкин В. А. Новости космонавтики // Федеральное космическое агентство. 2012. № 3. С. 2-7.

3. Афанасьев И. Новости космонавтики // Российский космический бюджет. 2013. № 2. С. 12-17.

© Третьякова А. А., 2014

УДК 336.645:79

М. А. Филатова Научный руководитель - Н. И. Смородинова Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Красноярск

ПЕРСПЕКТИВЫ РАЗВИТИЯ РАКЕТНО-КОСМИЧЕСКОЙ ОТРАСЛИ В РОССИИ

Исследуются перспективы развития ракетно-космической отрасли России, в ней описывается состояние отрасли на сегодняшний день, ее преимущества и недостатки. Также поставлены некоторые цели, которые стоит воплотить для дальнейшего успешного развития отрасли.

Развитие ракетно-космической отрасли на данный момент является одной из актуальных тем в России, так как современное общество все больше нуждается в высоких технологиях и переходит на инновационный путь развития. Но существует и ряд проблем, который препятствует России выйти на мировой рынок. Весь упор идет на организационные и структурные проблемы, что необходимо для совершенствования данного производства, но этого недостаточно для развития более новых технологий и производств.

Настоящее состояние ракетно-космической отрасли с уверенностью можно оценить как нестабильное, находящееся в кризисе. Конкурентоспособность российских носителей на мировом рынке запусков имеет тенденцию к снижению, которая объясняется внутриотраслевыми причинами - старением производственных фондов, ухудшением технологической дисциплины и кадрового потенциала, и внешними причинами по отношению к отрасли - укреплением курса рубля, переходом к рыночным ценам на энергоносители. В этом случае, использование стратегии рыночного предложения российских носителей, основанной на «лидерстве по издержкам», невозможно.

Растущие издержки внутрироссийского космического производства могли бы быть устранены государственной поддержкой производителей экспортно-ориентированной наукоемкой продукции. Если же такого не произойдет, то доля российских носителей на мировом рынке запусков значительно снизится .

Сегодня, российские производители довольно сильно отстают во всех технологиях создания спутников и средств связи, именно этим объясняется практическое отсутствие российских систем в данном сегменте рынка. Практически невозможно увидеть российское производство спутников на рынке готовых и отдельных изделий.

В связи с этим, соответствуя цели государственной политики ракетно-космической отрасли, планируется формирование стабильной, экономической, конкурентоспособной ракетно-космической промышленности, практическое и обязательное присутствие России на мировом космическом рынке. Основная цель развития ракетно-космической промышленности и один из главных приоритетов научно-технологического развития страны - это лидирующая позиция на мировом рынке.

Актуальные проблемы авиации и космонавтики - 2014. Социально-экономические и гуманитарные науки

Основные направления для достижения поставленной цели в этой области :

1. Создание космических комплексов с использованием высоких технологий, обладающих такими характеристиками, которые бы обеспечивали стабильное место на мировом рынке и высокую конкурентоспособность. Например, развитие современных средств выведения, спутников нового поколения с более длительным сроком существования, наукоемкие проекты по исследованию космического пространства и космических технологий.

2. Развитие группировки спутников связи, включающих в себя все виды связи, такие как персональная, фиксированная, переносная. Также создание метеорологических спутников, передающих информацию в реальном времени.

Для поддержания конкурентоспособности на рынке передачи информации, будет необходим качественный скачок в повышения интервала «конкурентного существования» спутников связи. Это может быть достигнуто с помощью создания «многоразовых» спутников связи, которые будут проектироваться, и создаваться с функциями их дальнейшего обслуживания, заправки, ремонта и модернизации прямо на орбите. Появление таких спутников можно ожидать к 2025 году, они будут представлять собой массивные орбитальные платформы, на которых будет размещаться различная целевая аппаратура и другое оборудование. В связи с этим, космическому рынку предстоят значительные структурные и количественные изменения.

3. Проведение организационных преобразований в ракетно-космической отрасли. К 2015 году планируется образовать несколько крупных российских ракетно-космических корпораций, которые будут самостоятельно развиваться, выпускать космическую технику для решения различного рода задач, как экономических, так и задач обороноспособности и безопасности страны. Также, эти корпорации будут осуществлять эффективную деятельность России на международных рынках.

4. Планируется модернизировать инфраструктуру и технологический уровень ракетно-космической

промышленности: введение нового оборудования средств управления, техническое и технологическое переоснащение предприятий отрасли, развитие систем связи и системы космодрома, развитие производственной базы космической отрасли.

Если взять технические характеристики российских образцов ракетно-космической техники, которые создаются по федеральным целевым программам, то к 2015 году Россию можно будет заметить на мировом уровне космической отрасли. Но для достижения такого результат по всем показателям с космической техникой лидирующих зарубежных стран, для успешного отечественного производства перспективной РКТ потребуется дополнительная ресурсная поддержка государства, технологические работы по целевым направлениям .

Переход России на инновационный путь развития будет толчком для осуществления успешного технологического развития ракетно-космической отрасли России. В частности, неотъемлемым условием является проведение государством глубокой реструктуризации оборонно-промышленного комплекса, обеспечение высоких темпов развития отечественной науки и образования и смежных отраслей.

1. Всемирный научно-исследовательский институт межотраслевой информации - Федеральный информационно-аналитический центр оборонной промышленности (ФГУП ВИМИ) [Электронный ресурс]. URL: http://www.vimi.ru/node/245 (дата обращения: 8.04.2014).

2. Федеральный портал [Электронный ресурс]. URL: http://www.protown.ru (дата обращения: 8.04.2014).

3. Военно-промышленный курьер ВПК - Общероссийская еженедельная газета [Электронный ресурс]. URL: http://vpk-news.ru (дата обращения: 8.04.2014).

© Филатова М. А., 2014



В продолжение темы:
Налоговая система

Многие люди мечтают о создании собственного бизнеса, но никак не могут это сделать. Нередко, в качестве основной помехи, которая их останавливает, они называют отсутствие...

Новые статьи
/
Популярные